CIS 120 Midterm I October 3, 2014

Name (printed): __________________________

Username (login id): _______________________

My signature below certifies that I have complied with the University of Pennsylvania’s Code of Academic Integrity in completing this examination.

Signature: ___________________________ Date: ______________________

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>/10</td>
</tr>
<tr>
<td>2</td>
<td>/10</td>
</tr>
<tr>
<td>3</td>
<td>/20</td>
</tr>
<tr>
<td>4</td>
<td>/20</td>
</tr>
<tr>
<td>5</td>
<td>/16</td>
</tr>
<tr>
<td>6</td>
<td>/24</td>
</tr>
<tr>
<td>Total</td>
<td>/100</td>
</tr>
</tbody>
</table>

- Do not begin the exam until you are told to do so.
- You have 50 minutes to complete the exam.
- There are 100 total points.
- Make sure your name and username (a.k.a. PennKey, e.g. stevez) is on the top of this page.
- Be sure to allow enough time for all the problems—skim the entire exam first to get a sense of what there is to do. Read the design problem description on page 3 carefully.
Problem 1: Binary Search Trees (10 points)

Recall the definition of generic binary trees and the BST insert and lookup functions:

```ocaml
type 'a tree =
  | Empty
  | Node of 'a tree * 'a * 'a tree

let rec insert (t:'a tree) (n:'a) : 'a tree =
begin match t with
  | Empty -> Node(Empty, n, Empty)
  | Node(lt, x, rt) ->
    if x = n then t else
    if n < x then Node (insert lt n, x, rt)
    else Node(lt, x, insert rt n)
end

let rec lookup (x: 'a) (t: 'a tree) : bool =
begin match t with
  | Empty -> false
  | Node(lt, y, rt) ->
    if x < y then lookup x lt
    else if x > y then lookup x rt
    else true
end
```

(a) Circle the trees that satisfy the binary search tree invariant. (Note that we have omitted the Empty nodes from these pictures, to reduce clutter.)

(b) Suppose you create a BST called big_tree by inserting a list of one million distinct integers (called a_million_ints) into the Empty tree, like this:

```ocaml
let rec insert_list (l: 'a list) (t: 'a tree) : 'a tree =
begin match l with
  | [] -> t
  | hd::tl -> insert_list tl (insert hd t)
end

let big_tree : int tree = insert_list a_million_ints Empty
```

In general, would you expect (lookup x big_tree) to run faster if a_million_ints was a sorted list or a randomly-ordered list? In one sentence, explain why.
Program Design: Abstract Vectors

Note: there are no questions on this page, but the concepts are used in the remainder of the exam.

Recall that in Homework 4, the N-body simulation used a representation of vectors that was fixed to be the tuple type float * float. This representation is sufficient for representing points, like (1.0, 2.0), that live in a 2-dimensional space, but it turns out that many modern algorithms (particularly those in web search and machine learning) represent data as very high-dimensional vectors, often with thousands or tens-of-thousands of coordinates. In the next few problems, we will develop (parts of) a library for an abstract type, vector, suitable for working with high dimensional floating-point data.

Understanding the Problem Instead of just two coordinates, an abstract vector’s coordinates are numbered by the non-negative int values: 0, 1, 2, 3, A vector v assigns a floating-point value to every such coordinate, so, conceptually, we can think of an abstract vector as an “infinitely wide” tuple.¹

To (informally) write down example vectors, we’ll use a tuple-like notation, but also require them to end with “0.0...”, which stands for an infinitely repeating sequence of 0.0 values. For example, the notation (1.0, 2.0, 0.0...) means the vector with coordinate 0 equal to 1.0, coordinate 1 equal to 2.0, and all larger coordinates equal to 0.0.

Exploiting Sparsity In many applications of very high-dimensional vectors, the vectors are sparse, which means that almost all of the coordinates are 0.0—there are just a few non-zero values. For instance, a typical sparse vector might have just coordinate 120 set to the value 2.0, coordinate 341 set to the value 1.0, and all other coordinates set to 0.0. Pictorially:

coordinates 0–119 \[(0.0, 0.0, ..., 0.0, 2.0, 0.0, 0.0, ..., 0.0, 1.0, 0.0, ...) \]

Sparsity suggests that we represent these vectors as lists of coordinate/value pairs, where all of the 0.0 values are omitted. Concretely, the example above could be represented by the OCaml value:

```ocaml
let v : (int * float) list = [(120, 2.0); (341, 1.0)]
```

The first component of each pair in the list is the index into the vector; the second component is the non-zero value at that index. It is also helpful for computations over vectors to require that the lists be sorted by coordinates. This leads to the datatype definition and invariant shown below in Figure 1.

(* INVARIANT: A sparse vector is a list of int * float pairs
 * [(i1, x1); (i2, x2); ...; (iN, xN)]
 * such that
 * (1) the i’s are sorted: i1 < i2 < ... < iN
 * (2) none of x1, ..., xN are 0.0 *)

type vector = (int * float) list

Figure 1: Sparse vector representation invariant

¹In practice, the width is limited by the largest int value, but for the purposes of this problem, we’ll assume there’s no such upper limit.
Define the interface

We first need a way to create and access vectors, which can be done using these three operations:

- `zero`: the vector all of whose coordinates are 0.0, namely: \((0.0, \ldots)\)
- `set v i x`: returns a vector that is the same as \(v\) except at coordinate \(i\), where it has value \(x\)
- `get v i`: returns the value at the \(i^{th}\) coordinate of \(v\)

Their types are given by:

```haskell
let zero : vector = ...
let set (v: vector) (i: int) (x: float) : vector = ...
let get (v: vector) (i: int) : float = ...
```

Problem 2: Write Test Cases (10 points)

Complete these test cases by filling in the concrete value that should make the test case pass according to the sparse-vector representation invariant. We have done the first one for you:

(a) `let test () : bool =
(set (set zero 120 2.0) 341 1.0) = ______[(120, 2.0); (341, 1.0)]_______
;; run_test "given example" test`

(b) `let test () : bool =

zero = ___________________________________
;; run_test "zero representation" test`

(c) `let test () : bool =

(set (set zero 341 1.0) 120 2.0) = ___________________________________
;; run_test "given example, other order" test`

(d) `let test () : bool =

let v : vector = set (set zero 1 1.0) 2 2.0 in

set v 1 0.0 = ___________________________________
;; run_test "set non-zero to zero" test`

(e) `let test () : bool =

get zero 27 = ___________________________________
;; run_test "get zero 27" test`

(f) `let test () : bool =

let v : vector = set (set zero 2 1.0) 2 2.0 in

get v 2 = ___________________________________
;; run_test "get v 2" test`
Problem 3: Implement the Behavior (20 points)

The code below implements the get operation for sparse vectors. Note how it uses the representation invariant, which requires that the list be sorted by coordinate, to determine whether to return the (implicit) 0.0 value:

(* Returns the value of the i’th coordinate of v *)

let rec get (v: vector) (i: int) : float =
begin match v with
| [] -> 0.0
| (j,y)::tl ->
 if i < j then 0.0 (* Coordinate i must be 0.0 since it’s not in the list *)
 else if i = j then y (* Found a non-zero value *)
 else get tl i (* Note: i > j *)
end

Using the code for get as a model, complete the implementation of the set operation. Remember that it must maintain the invariant—the list must be sorted by coordinate and may not contain any 0.0 values.

(* Returns a vector that is the same as v except at coordinate i, where it has value x *)

let rec set (v: vector) (i: int) (x: float) : vector =
begin match v with
| [] ->
| (j,y)::tl ->
end
Problem 4: Vector Dot Product (20 points)

One very common operation on vectors is called the dot product. (Don’t worry if you haven’t heard of this before, the idea is pretty simple.) This operation takes two vectors, multiplies the values at corresponding coordinates, and sums the results. For example, if

\[\mathbf{v} \text{ is the vector } (2.0, 3.0, 0.0\ldots) \text{ sparsely represented as: } [(0, 2.0); (1, 3.0)] \]
and \(\mathbf{u} \text{ is the vector } (0.0, 4.0, 5.0, 0.0\ldots) \text{ sparsely represented as: } [(1, 4.0); (2, 5.0)] \)

then their dot product is given by:

\[
(2.0 \times 0.0) + (3.0 \times 4.0) + (0.0 \times 5.0) + (0.0 \times 0.0) \ldots
= 0.0 + 12.0 + 0.0 + 0.0\ldots
= 12.0
\]

Sparse vectors are especially good for implementing dot product because multiplying by 0.0 doesn’t contribute to the sum, and the algorithm has a naturally recursive structure. Since the sparse representation doesn’t even contain the 0.0 values, we can exploit the invariant to efficiently carry out the computation, but we have to be careful to multiply the values at the same coordinates from each vector. In the example, this means identifying that both \(\mathbf{v} \) and \(\mathbf{u} \) have non-zero values at index 1 and adding their product (3.0 \times 4.0) to the running total.

Your task is to complete the implementation of vector dot_product. We have given you the match expression to get you started. How to complete the case analysis is up to you. Note that using the get operation repeatedly could be very inefficient, so do not use it.

```ml
let rec dot_prod (v: vector) (u: vector) : float =
begin match (v, u) with
```

end
Problem 5: Types and Abstraction (16 points)

Continuing to develop the sparse vector library, we can package it into a module as shown below, where we have added several other vector operations whose implementations are not shown.

```ocaml
module type VECTOR = sig
  type vector
  val zero : vector
  val set : vector -> int -> float -> vector
  val get : vector -> int -> float
  val add : vector -> vector -> vector
  val scale : float -> vector -> vector
  val dot_prod : vector -> vector -> float
  val equals : vector -> vector -> bool
end

module SparseVector : VECTOR = struct
  type vector = (int * float) list
  ...
  (* Implementation of the vector operations omitted *)
end
```

Figure 2: VECTOR interface and the SparseVector implementation of it.

For each OCaml value below, fill in the blank where the type annotation could go or write “ill typed” if there is a type error. These declarations take place in a top-level module called client.ml after the command ;; open SparseVector. We have done the first one for you.

```
(* client.ml *)
;; open SparseVector

let z : __________________ float ____________________ = get zero 0
let a : _____________________________________________ = get [(1, 0.0)] 1
let b : _____________________________________________ = (zero, 0.0)
let c : _____________________________________________ = [(add zero); (scale 1.0)]
let d : _____________________________________________ = zero::[]
let e : _____________________________________________ = [add; scale; equals]
let f : _____________________________________________ = (fun x -> fun y -> x :: y) 3
let g : _____________________________________________ = (fun x -> equals x x)
let h : _____________________________________________ = Some 0
```
Problem 6: Higher-order function patterns (24 points)

Recall the functions `transform` and `fold` discussed in lecture and used in HW04:

```
let rec transform (f: 'a -> 'b) (x: 'a list): 'b list =
    begin match x with
    | [] -> []
    | h :: t -> (f h) :: (transform f t)
    end

let rec fold (combine: 'a -> 'b -> 'b) (base:'b) (x : 'a list) : 'b =
    begin match x with
    | [] -> base
    | h :: t -> combine h (fold combine base t)
    end
```

Because the representation type of sparse vectors is the list type (shown below):

```plaintext
type vector = (int * float) list
```

we can use higher-order functions to implement operations of the vector library. In each case below, rewrite the given function to make use of either `transform` or `fold` as appropriate. You can introduce a helper function (such as `xyz_combine`), or use an anonymous function.

(a) (* Calculates the number of non-zero entries in a sparse vector. *)

```
let rec num_nonzeros (v: vector) : int =
    begin match v with
    | [] -> 0
    | _::tl -> 1 + (num_nonzeros tl) (* Each list element represents a non-zero coordinate *)
    end
```

```
let num_nonzeros (v: vector) : int =
```
(b) (* Scale a vector by multiplying each coordinate’s value by c.
 Maintains the no-zeros invariant by returning [] when scaling by 0.0. *)

\[
\text{let scale (c: float) (v: vector) : vector = }
\]

\[
\text{let rec multiply_all (v: vector) : vector =}
\]

\[
\begin{align*}
\text{begin match } v \text{ with} \\
| \ [] & \rightarrow \ [] \\
| (i,x)::tl & \rightarrow (i, c *. x)::(multiply_all tl) \\
\end{align*}
\]

\[
\text{end}
\]

\[
\text{in}
\]

\[
\text{if } c = 0.0 \text{ then } [] \text{ else multiply_all v}
\]

\[
\text{let scale (c: float) (v: vector) : vector =}
\]

(c) (* Returns the value of the i’th coordinate of v *)

\[
\text{let rec get (v: vector) (i: int) : float =}
\]

\[
\begin{align*}
\text{begin match } v \text{ with} \\
| \ [] & \rightarrow 0.0 \\
| (j,y)::tl & \rightarrow
\end{align*}
\]

\[
\begin{align*}
\text{if } i < j & \text{ then } 0.0 \text{ (* Coordinate i must be 0.0 since it’s not in the list *)} \\
\text{else if } i = j & \text{ then } y \text{ (* Found a non-zero value *)} \\
\text{else get tl i} & \text{ (* Note: } i > j \text{ *)}
\end{align*}
\]

\[
\text{end}
\]

\[
\text{let get (v: vector) (i: int) : float =}
\]