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Problem 1: Binary Search Trees (10 points)

Recall the definition of generic binary trees and the BST insert and lookup functions:

type ’a tree =
| Empty
| Node of ’a tree * ’a * ’a tree

let rec insert (t:’a tree) (n:’a) : ’a tree =
begin match t with
| Empty -> Node(Empty, n, Empty)
| Node(lt, x, rt) ->

if x = n then t else
if n < x then Node (insert lt n, x, rt)
else Node(lt, x, insert rt n)

end

let rec lookup (x: ’a) (t: ’a tree) : bool =
begin match t with
| Empty -> false
| Node(lt, y, rt) ->

if x < y then lookup x lt
else if x > y then lookup x rt
else true

end

(a) Circle the trees that satisfy the binary search tree invariant. (Note that we have omitted the Empty

nodes from these pictures, to reduce clutter.)

(a) (b) (c) (d) (e)

1 4 4 7 4
/ \ / \ / \ / \ / \
0 2 3 6 1 5 4 \ 5 6

/ \ \ / \ \ \
1 3 2 0 5 9 7

/ / \
3 8 8

ANSWER: (a) and (d) are BSTs. One point per tree.

(b) Suppose you create a BST called big_tree by inserting a list of one million distinct integers (called
a_million_ints) into the Empty tree, like this:
let rec insert_list (l: ’a list) (t: ’a tree) : ’a tree =
begin match l with
| [] -> t
| hd::tl -> insert_list tl (insert hd t)
end

let big_tree : int tree = insert_list a_million_ints Empty

In general, would you expect (lookup x big_tree) to run faster if a_million_ints was a sorted
list or a randomly-ordered list? In one sentence, explain why.

ANSWER: A randomly-ordered list would perform better because a sorted list creates a skewed,
list-like tree, so the BST search would not be able to prune the search space.

Grading Scheme: 2 points for correctly identifying “random”, 3 points for the explanation, 2 or 3
points for “almost” correct other explanations
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Program Design: Abstract Vectors

Note: there are no questions on this page, but the concepts are used in the remainder of the exam.
Recall that in Homework 4, the N-body simulation used a representation of vectors that was fixed

to be the tuple type float * float. This representation is sufficient for representing points, like
(1.0, 2.0), that live in a 2-dimensional space, but it turns out that many modern algorithms (particu-
larly those in web search and machine learning) represent data as very high-dimensional vectors, often
with thousands or tens-of-thousands of coordinates. In the next few problems, we will develop (parts of)
a library for an abstract type, vector, suitable for working with high dimensional floating-point data.

Understanding the Problem Instead of just two coordinates, an abstract vector’s coordinates are
numbered by the non-negative int values: 0, 1, 2, 3, . . . . A vector v assigns a floating-point value to
every such coordinate, so, conceptually, we can think of an abstract vector as an “infinitely wide” tuple.1

To (informally) write down example vectors, we’ll use a tuple-like notation, but also require them
to end with “0.0 . . .”, which stands for an infinitely repeating sequence of 0.0 values. For example, the
notation (1.0, 2.0, 0.0 . . .) means the vector with coordinate 0 equal to 1.0, coordinate 1 equal to 2.0, and
all larger coordinates equal to 0.0.

Exploiting Sparsity In many applications of very high-dimensional vectors, the vectors are sparse,
which means that almost all of the coordinates are 0.0—there are just a few non-zero values. For
instance, a typical sparse vector might have just coordinate 120 set to the value 2.0, coordinate 341 set
to the value 1.0, and all other coordinates set to 0.0. Pictorially:

(

coordinates 0–119︷ ︸︸ ︷
0.0, 0.0, ..., 0.0 , 2.0,

coordinates 121–340︷ ︸︸ ︷
0.0, 0.0, ..., 0.0 , 1.0, 0.0, . . . )

Sparsity suggests that we represent these vectors as lists of coordinate/value pairs, where all of the 0.0

values are omitted. Concretely, the example above could be represented by the OCaml value:
let v : (int * float) list = [(120, 2.0); (341, 1.0)]

The first component of each pair in the list is the index into the vector; the second component is the
non-zero value at that index. It is also helpful for computations over vectors to require that the lists be
sorted by coordinates. This leads to the datatype definition and invariant shown below in Figure 1.

(* INVARIANT: A sparse vector is a list of int * float pairs

* [ (i1, x1) ; (i2, x2) ; ... ; (iN, xN) ]

* such that

* (1) the i’s are sorted: i1 < i2 < ... < iN

* (2) none of x1, ..., xN are 0.0 *)

type vector = (int * float) list

Figure 1: Sparse vector representation invariant

1In practice, the width is limited by the largest int value, but for the purposes of this problem, we’ll assume there’s no
such upper limit.
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Define the interface

We first need a way to create and access vectors, which can be done using these three operations:
zero the vector all of whose coordinates are 0.0, namely: (0.0 . . .)

set v i x returns a vector that is the same as v except at coordinate i, where it has value x

get v i returns the value at the ith coordinate of v
Their types are given by:
let zero : vector = ...
let set (v: vector) (i: int) (x: float) : vector = ...
let get (v: vector) (i: int) : float = ...

Problem 2: Write Test Cases (10 points)

Complete these test cases by filling in the concrete value that should make the test case pass according
to the sparse-vector representation invariant. We have done the first one for you:

(a) let test () : bool =
(set (set zero 120 2.0) 341 1.0) = ______[(120, 2.0); (341, 1.0)]________

;; run_test "given example" test

(b) let test () : bool =

zero = ______________[]___________________
;; run_test "zero representation" test

(c) let test () : bool =
(set (set zero 341 1.0) 120 2.0) = ______[(120, 2.0); (341, 1.0)]________

;; run_test "given example, other order" test

(d) let test () : bool =
let v : vector = set (set zero 1 1.0) 2 2.0 in

set v 1 0.0 = ___________[(2, 2.0)]______________
;; run_test "set non-zero to zero" test

(e) let test () : bool =

get zero 27 = _______________0.0_________________
;; run_test "get zero 27" test

(f) let test () : bool =
let v : vector = set (set zero 2 1.0) 2 2.0 in

get v 2 = _______________2.0_________________
;; run_test "get v 2" test

Grading Scheme: 2 points each
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Problem 3: Implement the Behavior (20 points)

The code below implements the get operation for sparse vectors. Note how it uses the representation in-
variant, which requires that the list be sorted by coordinate, to determine whether to return the (implicit)
0.0 value:
(∗ Returns the value of the i ’ th coordinate of v ∗)
let rec get (v: vector) (i: int) : float =
begin match v with
| [] -> 0.0
| (j,y)::tl ->
if i < j then 0.0 (∗ Coordinate i must be 0.0 since it ’s not in the list ∗)
else if i = j then y (∗ Found a non−zero value ∗)
else get tl i (∗ Note: i > j ∗)

end

Using the code for get as a model, complete the implementation of the set operation. Remember that it
must maintain the invariant—the list must be sorted by coordinate and may not contain any 0.0 values.
(∗ Returns a vector that is the same as v except at coordinate i , where it has value x ∗)
let rec set (v: vector) (i: int) (x: float) : vector =
begin match v with
| [] -> if x = 0.0 then [] else [(i, x)]
| (j,y)::tl ->
if i < j then (if x = 0.0 then v else (i,x)::v)
else if i = j then (if x = 0.0 then tl else (i,x)::tl)
else (j,y)::(set tl i x) (∗ Note: i > j ∗)

end

Grading Scheme:

• 3 pts. proper checks for x = 0.0

• base case: 1 pt.

• i < j case: 4 pts.

• i = j case: 4 pts.

• i > j case: 4 pts. properly using recursion, another 4 pts. for maintaining the list

• flipped comparison: -4 pts.

• failing rather than maintaining the invariant 1 out of the 3 pts.

• small syntax errors -0.5 or -1 pts.
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Problem 4: Vector Dot Product (20 points)

One very common operation on vectors is called the dot product. (Don’t worry if you haven’t heard
of this before, the idea is pretty simple.) This operation takes two vectors, multiplies the values at
corresponding coordinates, and sums the results. For example, if

v is the vector (2.0, 3.0, 0.0 . . .) sparsely represented as: [(0, 2.0); (1, 3.0)]

and u is the vector (0.0, 4.0, 5.0, 0.0 . . .) sparsely represented as: [(1, 4.0); (2, 5.0)]

then their dot product is given by:
(2.0 *. 0.0) +. (3.0 * 4.0) +. (0.0 *. 5.0) +. (0.0 *. 0.0) ...

= 0.0 +. 12.0 +. 0.0 +. 0.0...

= 12.0

Sparse vectors are especially good for implementing dot product because multiplying by 0.0 doesn’t
contribute to the sum, and the algorithm has a naturally recursive structure. Since the sparse repre-
sentation doesn’t even contain the 0.0 values, we can exploit the invariant to efficiently carry out the
computation, but we have to be careful to multiply the values at the same coordinates from each vector.
In the example, this means identifying that both v and u have non-zero values at index 1 and adding their
product (3.0 *. 4.0) to the running total.

Your task is to complete the implementation of vector dot_prod. We have given you the match

expression to get you started. How to complete the case analysis is up to you. Note that using the get

operation repeatedly could be very inefficient, so do not use it .
let rec dot_prod (v: vector) (u: vector) : float =
begin match (v, u) with
| ([], _) -> 0.0
| (_, []) -> 0.0
| ((i,x)::vtl, (j,y)::utl) ->
if i < j then dot_prod vtl u else
if i = j then (x *. y) +. (dot_prod vtl utl)
else dot_prod v utl

end

Grading Scheme:
Each base case: 1 pt. correct pattern, 2 pt. correct answer (total: 6)
Non-base case: 1 pt. correct pattern match, 2 pts. for each correct condition (there are three cases), 3
pts. for correct answer in i < j and i > j cases, 1 pt. for correct = case. (total: 14)

Other deductions:

• -1 globally for int instead of float

• only ([], []) base case: 2 pts. instead of 6 pts.

• -10 if there is only the = case in the logic

• swapping i < j and i > j: 2 out of 6 pts. for the conditions

• checking equality on tuple rather than index: -1 for each condition

• miscellaneous other deductions for incorrect code
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Problem 5: Types and Abstraction (16 points)

Continuing to develop the sparse vector library, we can package it into a module as shown below, where
we have added several other vector operations whose implementations are not shown.

module type VECTOR = sig
type vector

val zero : vector
val set : vector -> int -> float -> vector
val get : vector -> int -> float
val add : vector -> vector -> vector
val scale : float -> vector -> vector
val dot_prod : vector -> vector -> float
val equals : vector -> vector -> bool

end

module SparseVector : VECTOR = struct
type vector = (int * float) list
... (∗ Implementation of the vector operations omitted ∗)

end

Figure 2: VECTOR interface and the SparseVector implementation of it.

For each OCaml value below, fill in the blank where the type annotation could go or write “ill typed”
if there is a type error. These declarations take place in a top-level module called client.ml after the
command ;; open SparseVector. We have done the first one for you.

(∗ client .ml ∗)
;; open SparseVector

let z : __________________ float ____________________ = get zero 0

let a : ________________ ill typed __________________ = get [(1, 0.0)] 1

let b : ________________ vector * float _____________ = (zero, 0.0)

let c : _______ (vector -> vector) list _____________ = [(add zero); (scale 1.0)]

let d : _________________ ill typed _________________ = zero::[[]]

let e : _________________ ill typed _________________ = [add; scale; equals]

let f : _________ int list -> int list ______________ = (fun x -> fun y -> x :: y) 3

let g : ______________ vector -> bool _______________ = (fun x -> equals x x)

let h : _________________ int option ________________ = Some 0

Grading scheme: 2 points per answer. Half credit for omitting necessary parentheses (such as int *
bool list vs. (int * bool) list or int -> int list vs. (int -> int) list ). Half credit for types that
are too generic. Half credit for other “almost correct” answers.
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Problem 6: Higher-order function patterns (24 points)

Recall the functions transform and fold discussed in lecture and used in HW04:

let rec transform (f: ’a -> ’b) (x: ’a list): ’b list =
begin match x with
| [] -> []
| h :: t -> (f h) :: (transform f t)
end

let rec fold (combine: ’a -> ’b -> ’b) (base:’b) (x : ’a list) : ’b =
begin match x with
| [] -> base
| h :: t -> combine h (fold combine base t)
end

Because the representation type of sparse vectors is the list type (shown below):
type vector = (int * float) list

we can use higher-order functions to implement operations of the vector library. In each case below,
rewrite the given function to make use of either transform or fold as appropriate. You can introduce a
helper function (such as xyz_combine), or use an anonymous function.

(a) (∗ Calculates the number of non−zero entries in a sparse vector . ∗)
let rec num_nonzeros (v: vector) : int =
begin match v with
| [] -> 0
| _::tl -> 1 + (num_nonzeros tl) (∗ Each list element represents a non−zero coordinate ∗)

end

let num_nonzeros (v: vector) : int =
fold (fun (x:(int * float)) (acc:int) -> 1 + acc) 0 v

Grading Scheme: 6 pts.:

• Not using fold: 0 pts.

• 1 pt. for fold and passing in list v.

• base case: 1 pt. for correct int, 0.5 pt for float

• 1 pt. for each arguments: type and syntax flexible

• 2 pts. computation of the body
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(b) (∗ Scale a vector by multiplying each coordinate ’s value by c.
Maintains the no−zeros invariant by returning [] when scaling by 0.0. ∗)

let scale (c: float) (v: vector) : vector =
let rec multiply_all (v: vector) : vector =
begin match v with
| [] -> []
| (i,x)::tl -> (i, c *. x)::(multiply_all tl)

end
in
if c = 0.0 then [] else multiply_all v

let scale (c: float) (v: vector) : vector =
if c = 0.0 then [] else
transform (fun (i, x) -> (i, c *. x)) v

or

let scale (c: float) (v: vector) : vector =
let m (p:(int * float)) : (int * float) =
match p with
| (i, x) -> (i, c *. x)

end
in if c = 0.0 then [] else transform m v

Grading Scheme: 8 pts.:

• 1 pt transform and v.

• 2 pt. doing the invariant check

• 1 pt. correct parameter

• 1 pt. for deconstructing the tuple (matching or using fst or snd)

• 1 pt. for doing c *. x

• 2 pt. for returning a tuple (half credit for wrong order)

(c) (∗ Returns the value of the i ’ th coordinate of v ∗)
let rec get (v: vector) (i: int) : float =
begin match v with
| [] -> 0.0
| (j,y)::tl ->
if i < j then 0.0 (∗ Coordinate i must be 0.0 since it ’s not in the list ∗)
else if i = j then y (∗ Found a non−zero value ∗)
else get tl i (∗ Note: i > j ∗)

end

let get (v: vector) (i: int) : float =
fold (fun (j,y) acc -> if i < j then 0.0 else if i = j then y else acc) 0.0 v

or

let get (v: vector) (i: int) : float =
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let get_combine (i:int) : (int * float) -> float -> float =
fun (j, y) -> fun (acc: float) ->
if i < j then 0.0
else if i = j then y
else acc

in
fold (get_combine i) 0.0 v

Grading Scheme: 10 pts.:

• 1 pt fold and v.

• 2 pts. correct parameters

• Base case: 1 pt. (0.5 for int instead of float)

• 6 pts. for body logic: There are either three cases:

– i = j case: return val (2 pts.)
– i < j case: return 0.0 (2 pts.)
– i > j case: return accumulator (2 pts.)

or there are two cases

– i = j case: return val (3 pts.)
– i > j case: return accumulator (3 pts.)
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