
CIS 120 Midterm I February 21, 2014

Name (printed):

Pennkey (login id):

My signature below certifies that I have complied with the University of Pennsylvania’s Code of
Academic Integrity in completing this examination.

Signature: Date:

1 /16

2 /20

3 /16

4 /12

5 /12

6 /12

7 /12

Total /100

• Do not begin the exam until you are told to do so.

• You have 50 minutes to complete the exam.

• There are 100 total points.

• Make sure your name and Pennkey (a.k.a. username) is on the top of this page.

• Be sure to allow enough time for all the problems—skim the entire exam first to get a sense of
what there is to do.

1

1. Program Design (16 points)
Use the four-step design methodology to implement a function called trim that, when given an
integer n and a list x, returns the list with all occurrences of n removed from the beginning of the
list.

For example, trim 1 [1;1;2;1] should yield the list [2;1].

a. Step 1 is understanding the problem. You don’t have to write anything for this part—your
answers below will demonstrate whether or not you succeeded with Step 1.

b. Step 2 is formalizing the interface. Write down the type of the trim function as you might
find it in a .mli file or module interface.

val trim: __

c. Step 3 is writing test cases. Complete the following tests with the expected behavior. We
have done the first one for you, based on the problem description.
Note that some test cases are better than others, and credit will be assigned accordingly:
make sure your tests cover a sufficiently broad range of “interesting” input numbers and
lists. Fill in the description string of the run_test function with a short explanation of why
the test case is interesting.

i. let test () : bool =
trim 1 [1;1;2;1] = [2;1]
;; run_test "given from the problem description" test

ii. let test () : bool =

(trim ________________________________) = __________________

;; run_test "___" test

iii. let test () : bool =

(trim ________________________________) = ____________________

;; run_test "___" test

2

d. Step 4 is implementing the program.

let rec trim (n : _____________) (x : __________________) : ______________ =

3

2. Types (20 points)
For each OCaml value below, fill in the blank where the type annotation could go or write “ill
typed” if there is a type error. Recall that the @ operator appends two lists together in OCaml. We
have done the first one for you.

let x : ___________ int list ______________ = [120]

let a : ___________________________________ = 1 :: [2]

let b : ___________________________________ = 1 :: [[]]

let c : ___________________________________ = [(1,true)]

let d : ___________________________________ = (1, true)

let e : ___________________________________ = [1; true]

let f : ___________________________________ = [[]] @ [[1]]

let g : ___________________________________ = [1] @ []

let h : ___________________________________ = (fun x -> fun y -> x + y) 3

let i : ___________________________________ = [fun x -> x + 1; fun x -> x - 1]

let j : ___________________________________ = Some 3

4

3. Datatypes and Trees (16 points)
Consider the following definition of trees with integers stored only at the leaves:
type leafy_tree =
| Leaf of int
| Branch of leafy_tree * leafy_tree

For each of the following programs, write the value computed for r:

a. let rec f (t : leafy_tree) : int =
begin match t with
| Leaf x -> x
| Branch (l, r) -> max (f l) (f r)
end

let r : int = f (Branch (Leaf 1, Branch (Leaf 3, Leaf 2)))

Answer: r =

b. let rec g (y : int) (t : leafy_tree) : leafy_tree =
begin match t with
| Leaf x -> Leaf y
| Branch (l, r) -> Branch (g y l, g y r)
end

let r : leafy_tree = g 4 (Branch (Leaf 1, Leaf 2))

Answer: r =

c. let rec h (y : int) (t : leafy_tree) : leafy_tree =
begin match t with
| Leaf x -> Leaf (y + x)
| Branch (l, r) -> h y l
end

let r : leafy_tree = h 4 (Branch (Leaf 1, Leaf 2))

Answer: r =

d. let rec j (t : leafy_tree) : int list =
begin match t with
| Leaf x -> [x]
| Branch (l, r) -> (j l) @ (j r)
end

let r : int list = j (Branch (Leaf 1, Branch (Leaf 3, Leaf 2)))

Answer: r =

5

4. Higher-order function patterns (12 points)
Recall the functions transform and fold discussed in lecture and used in HW04:

let rec transform (f: ’a -> ’b) (x: ’a list): ’b list =
begin match x with
| [] -> []
| h :: t -> (f h) :: (transform f t)
end

let rec fold (combine: ’a -> ’b -> ’b) (base:’b) (x : ’a list) : ’b =
begin match x with
| [] -> base
| h :: t -> combine h (fold combine base t)
end

The following recursive functions have been given for you. Rewrite each of them using either
transform or fold.

a. let rec member (elt : int) (x : int list) : bool =
begin match x with
| [] -> false
| h :: t -> h = elt || member elt t
end

let member (elt : int) (x : int list) : bool =

6

b. let rec add_ancestor_labels_list (rs: tree list): labeled_tree list =
begin match rs with
| [] -> []
| h :: t -> add_ancestor_labels h :: add_ancestor_labels_list t

end

let add_ancestor_labels_list (rs : tree list) : labeled_tree list =

7

5. Modules and Abstract types (12 points)
Consider the following module definition
module M = struct
type t = int
let zero : t = 0
let incr (x : t) : t = x + 1
let to_int (x: t) : int = x
let from_int (x : int) : t = x

end

and the following invariant that the module designer would like to maintain

A value of type M.t is never negative.

Evaluate whether each of the following signatures for M could be used to maintain this invariant.

a. type t
val zero : t
val incr : t -> t
val to_int : t -> int
val from_int : bool -> t

Circle one:

i. This interface prevents all clients from breaking the invariant
ii. A client could break the invariant if M used this interface

iii. This interface doesn’t match M (it would cause a compilation error)

b. type t
val zero : t
val incr : t -> t
val to_int : t -> int

Circle one:

i. This interface prevents all clients from breaking the invariant
ii. A client could break the invariant if M used this interface

iii. This interface doesn’t match M (it would cause a compilation error)

c. type t
val zero : t
val incr : t -> t
val to_int : t -> int
val from_int : int -> t

Circle one:

i. This interface prevents all clients from breaking the invariant
ii. A client could break the invariant if M used this interface

iii. This interface doesn’t match M (it would cause a compilation error)

8

6. Binary Search Trees (12 points)
Circle either T (true) or F (false) for each statement about binary search trees below. Below,
insert and delete refer to the BST functions that we discussed in class. For reference, these
functions appear in the appendix.

a. T F An Empty tree satisfies the BST invariant.

b. T F The tree below satisfies the BST invariant.

5
/ \
2 7
/ \
1 6

c. T F The tree below satisfies the BST invariant.

3
/ \
2 7
/
2

d. T F Suppose we are given the following tree t that does not satisfy the BST invariant:

2
/ \
5 3

Then the expression (insert (delete 5 t) 5) will return a tree that satisfies the
BST invariant (i.e. a tree that is a BST).

e. T F If you insert a number n into a BST t, and then delete n from the result, then the
resulting tree will always have exactly the same shape and same elements as t.

f. T F If you delete a number n from a BST t, and then insert n into the result, then the
final tree will always have exactly the same shape and same elements as t.

9

7. More Binary Search Trees (12 points)
Recall the type of generic binary search trees:
type ’a tree =
| Empty
| Node of tree * ’a * tree

Implement a function called scs, short for smallest containing subtree. This function should,
when given two values that appear in a binary search tree, return the smallest subtree that contains
both of those values.

For example, given the tree the smallest containing subtree of 1 and 3 is
t1 = 4 t2 = 2

/ \ / \
2 5 1 3
/ \
1 3

Likewise, the smallest subtree of t1 containing 1 and 2 is also t2. On the other hand, the smallest
subtree of t1 that contains both 2 and 5 is the whole tree.

You should assume that the input tree is a binary search tree, that both input values are contained
within the tree, and that the first argument is smaller than the second. Your solution does not need
to detect whether any of these assumptions are violated.

Your implementation must take advantage of the binary search tree invariant and must work for
generic binary search trees. You may not use any auxiliary functions in your solution, such as
lookup, insert, or delete.

10

(You may use this page for your implementation of scs if needed.)

11

Appendix - BSTs containing integers

type tree =
| Empty
| Node of tree * int * tree

let rec lookup (t:tree) (n:int) : bool =
begin match t with
| Empty -> false
| Node(lt, x, rt) ->

if x = n then true
else if n < x then lookup lt n
else lookup rt n

end

let rec insert (t:int tree) (n:int) : int tree =
begin match t with
| Empty -> Node (Empty, n, Empty)
| Node (lt, x, rt) ->

if x = n then t
else if n < x then Node (insert lt n, x, rt)
else Node(lt, x, insert rt n)

end

let rec tree_max (t:tree) : int =
begin match t with
| Empty -> failwith "tree_max called on empty tree"
| Node(_,x,Empty) -> x
| Node(_,_,rt) -> tree_max rt

end

let rec delete (n:int) (t:tree) : tree =
begin match t with
| Empty -> Empty
| Node(lt,x,rt) ->

if x = n then
begin match (lt,rt) with
| (Empty, Empty) -> Empty
| (Node _, Empty) -> lt
| (Empty, Node _) -> rt
| _ -> let m = tree_max lt in

Node(delete m lt, m, rt)
end

else
if n < x then Node(delete n lt, x, rt)
else Node(lt, x, delete n rt)

end

12

