1. Types (14 points)

For each OCaml value below, fill in the blank where the type annotation could go or write “ill typed” if there is a type error on that line. Your answer should be the most specific type possible, i.e. int list instead of ’a list.

Some of these expressions refer to values specified by the SET interface from homework 3. An abbreviated version this interface appears on page ?? in the reference appendix. You may assume that all of the definitions below appear outside of a module that implements this interface, such as OLSet, and that this module has already been opened.

We have done the first one for you.

;; open OLSet

let z : ______ int list _________ = [1]

let a : __ ill typed __ = [add 3 empty; add true empty]

let b : ___ int set list ____ = [add 3 empty; empty]

let c : ____int list set ___ = add [3] empty

let d : _____ill typed____ = if (3 = []) then 1 else 2

let e : ____ill typed____ = add 3 []

let f : ___int set -> int set ____ = add 3

let g : __int set set____ = set_of_list [add 3 empty]

Grading Scheme: 2 points each.
2. Higher-order Functions

Recall the higher-order list processing functions:

```ocaml
let rec transform (f: 'a -> 'b) (l: 'a list): 'b list =
    begin match l with
    | [] -> []
    | h :: t -> (f h) :: (transform f t)
    end

let rec fold (combine: 'a -> 'b -> 'b) (base:'b) (l : 'a list) : 'b =
    begin match l with
    | [] -> base
    | h :: t -> combine h (fold combine base t)
    end
```

Multiple choice: For each of the following (well-typed) programs, check the box for the value computed for \(\text{ans} \), or mark “infinite loop” if the program loops. Note that we have deliberately replaced some types with `??` in the code below.

Grading: 4 points each, no partial credit.

a. (4 points)

```ocaml
let f (x:bool) (y:int) : ?? =
    if x then 3 else y in
let ans = f true

ans =
□ 1
□ true
☑ fun (y:int) -> if true then 3 else y
□ false
□ fun (x:bool) -> if x then 3 else y
□ infinite loop
```

b. (4 points)

```ocaml
let rec f (x:int) (y:int) : int list -> int list =
    transform (fun h -> if h = x then y else h)
let ans = f 0 2 [1;0;3;0]

ans =
□ [0;2;0;2]
☑ [1;2;3;2]
□ [1;0;3;0]
□ [2;0;2;0]
□ [1;2;3;4]
□ infinite loop
```
c. (4 points)

```ocaml
let rec g (x : 'a list) : ?? = 
    transform (fun h -> [h]) x

let ans = g [1;2;3]

ans = □ [1;2;3] □ [[1;2;3]]
    □ [] □ [[1]]
    ✗ [[1];[2];[3]] □ infinite loop
```

d. (4 points)

```ocaml
let rec n (x : int list) : ?? = 
    begin match x with
    | [] -> n x
    | h :: t -> fold (fun y a -> if y > a then y else a) h t
    end

let ans = n [1;2;3;5]

ans = □ 0 □ 1
    □ 4 ✗ 5
    □ 11 □ infinite loop
```
3. Binary Search Trees

The next problem concerns a buggy implementation of binary search trees. For reference, the correct implementation (presented in class) appears in the Appendix on page ??.

Although the implementations below are incorrect, there are still some inputs that work. Complete each of the test cases below to demonstrate that these implementations sometimes produce the correct answer and sometimes do not. Your answer will be always be an integer. These test cases all use the tree shown pictorially as:

```
t =  5
  / \                   
 1  7                   
  / \                   
0  3
```

a. (6 points)

```
let rec bad_lookup (t:tree) (n:int) : bool =
begin match t with
| Empty -> false
| Node(lt, x, rt) ->
  if n < x then bad_lookup lt n
  else bad_lookup rt n
end

;; run_test "bad_lookup_works" (fun () ->

  let x = ____________ in
  bad_lookup t x = lookup t x) ;; run_test "bad_lookup_fails" (fun () ->

  let x = ____________ in
  not (bad_lookup t x = lookup t x))
```

ANSWER: This lookup function always returns false. Therefore, answers to the first test include any number not present in the tree, and for the second, any number in the tree.
b. (6 points)

```ocaml
let rec bad_insert (t:tree) (n:int) : tree = begin match t with
| Empty -> Node(Empty, n, Empty)
| Node(lt, x, rt) ->
  if x = n then t
  else if n < x then bad_insert lt n
  else bad_insert rt n
end

;; run_test "bad_insert_works" (fun () ->

  let x = ____________ in
  bad_insert t x = insert t x)

;; run_test "bad_insert_fails" (fun () ->

  let x = ____________ in
  not (bad_insert t x = insert t x))

ANSWER: This insert function only works for 5 (which is already in the tree).
```
4. Abstract types and invariants (28 points total)

In this problem, you will think about invariants in the implementation of an abstract type of interval sets of integers, defined by the signature IVALSET below.

```ocaml
module type IVALSET = sig
  type ivalset

  (* the empty interval set *)
  val empty : ivalset

  (* test whether an interval set contains a specific number *)
  val contains : int -> ivalset -> bool

  (* test if two sets contain the same elements *)
  val equals : ivalset -> ivalset -> bool

  (* "add_interval lo hi s" constructs a set that extends s with all elements greater or equal to lo and strictly less than hi. *)
  val add_interval : int -> int -> ivalset -> ivalset
end
```

This data structure is like a standard set—for example, there is an empty set `empty`, we can test whether a set `contains` a particular element, and we can compare two sets for equality with `equals`.

The main novelty of this abstract type is that it optimizes the storage of dense ranges of numbers. For example, suppose that you want to create a set containing the numbers 1, 2, 3, 4, 5, and 6. Using the sets from HW3, you must add each of these numbers individually. However, this structure allows the bulk operation of adding an interval of numbers to create the set.

```ocaml
let set1to6 : ivalset = add_interval 1 7 empty
```

An interval is defined by two elements, `lo` and `hi`, representing all `x` such that `lo ≤ x < hi`. (Note that if `lo ≥ hi`, then the interval is empty.) As an example, the following expressions evaluate to `true`, indicating that 4 is contained in the interval specified by 1 and 7 contains 4 (add_interval 1 7 empty)

but 7 is not
not (contains 7 (add_interval 1 7 empty))

and adding an empty interval does not change a set.
equals (add_interval 3 3 empty) empty

Your job is to implement this interface. We have started this implementation for you using an ordered list of pairs as the concrete representation. For example, the set \{1 2 3 4 5 6\} is represented by a list containing just the interval \[(1, 7) \]. Similarly, the set \{1 2 4 5 6\} is represented by the two intervals \[(1, 3); (4, 7) \].
module Ivalset : IVALSET = struct

 type ivalset = (int*int) list

 let empty : ivalset = []

 let rec equals (s1:ivalset) (s2:ivalset) : bool = (s1 = s2)

 let rec contains (i:int) (x:ivalset) : bool =
 (* ... implementation of contains (part b) ... *)

 let rec add_interval (lo : int) (hi: int) (x:ivalset) : ivalset =
 (* ... implementation of add_interval (part c) ... *)

end

a. (6 points) We have already implemented the equals function above. Two sets are equal when contains returns the same answer for every input. For example, the following expression should evaluate to true

 equals (add_interval 1 3 (add_interval 3 7 empty))
 (add_interval 1 7 empty)

However, our implementation of equals relies on the following invariant about ivalsets.

- The intervals must be nonempty: Every (lo,hi) in the list must have lo < hi.
- The intervals must be disjoint: Each (lo1,hi1) followed by (lo2,hi2) in the list must have hi1 < lo2.

Note that this invariant implies that the intervals in the list are sorted.

Mark below whether each list satisfies or does not satisfy this invariant.

<table>
<thead>
<tr>
<th>List</th>
<th>Satisfies</th>
<th>Does Not Satisfy</th>
<th>Grading Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>[]</td>
<td>☒</td>
<td>☐</td>
<td>1 point each.</td>
</tr>
<tr>
<td>[(1,7)]</td>
<td>☒</td>
<td>☐</td>
<td></td>
</tr>
<tr>
<td>[(1,1);(2,3)]</td>
<td>☐</td>
<td>☒</td>
<td></td>
</tr>
<tr>
<td>[(1,4);(2,5)]</td>
<td>☐</td>
<td>☒</td>
<td></td>
</tr>
<tr>
<td>[(1,2);(2,3)]</td>
<td>☐</td>
<td>☒</td>
<td></td>
</tr>
<tr>
<td>[(1,2);(3,4)]</td>
<td>☒</td>
<td>☐</td>
<td></td>
</tr>
</tbody>
</table>

Grading Scheme: 1 point each.
b. (10 points) Now implement the `contains` function. Your implementation should take advantage of the invariant from part (a) to do less work.

```ocaml
let rec contains (i:int) (x:ivalset) : bool = begin match x with
  | [] -> false
  | (lo, hi) :: t ->
    if i < hi then i >= lo
    else contains i t
end
```

Grading Scheme: 2 points base case, 2 points testing between lo and hi, 4 points for correct behavior when \(i < hi \), (including skipping the recursive call), 2 points for recursive case when \(i \geq hi \).
c. (12 points) Finally, consider several potential implementations of the `add_interval` function on the next few pages. As above, `add_interval` should assume that the invariant holds for `x`, but this time it also must ensure that it holds for any output for this function.

For each potential implementation, circle whether it correctly preserves the invariant or give an example where the output of the function violates the invariant.

Grading Scheme: 4 points each.

```ocaml
let rec add_interval (lo:int) (hi:int) (x:ivalset) : ivalset =
  (lo,hi) :: x
```

Circle one:

- correct
- violates invariant when
 - `lo = ___2____________________________`
 - `hi = ___3____________________________`
 - `x = ___[(1,2)]______________________`

and produces the following result

 ____[(2,3); (1,2)]___________________

Grading Scheme: This function violates the invariant when the new interval includes a number larger than any already contained in the ivalset, or when the new interval is empty.
let rec add_interval (lo:int) (hi:int) (x:ivalset) : ivalset =
 if hi <= lo then x
 else begin match x with
 | [] -> [(lo,hi)]
 | (lo2,hi2) :: t ->
 if hi < lo2
 then (lo,hi) :: x
 else if lo > hi2
 then (lo2,hi2) :: add_interval lo hi t
 else
 let nlo = min lo lo2 in
 let nhi = max hi hi2 in
 (nlo, nhi) :: t
 end

Circle one:
correct violates invariant when

lo = _____2__________________________
hi = _____6__________________________
x = _____[(1,3);(5,7)]_____________

and produces the following result

_
[(1,6);(5,7)]_______________________

Grading Scheme: This function violates the invariant when the new interval overlaps two intervals already in the list.
let rec add_interval (lo:int) (hi:int) (x:ivalset) : ivalset =
 if hi <= lo then x
 else begin match x with
 | [] -> [(lo,hi)]
 | (lo2,hi2) :: t ->
 if hi < lo2
 then (lo,hi) :: x
 else if lo > hi2
 then (lo2, hi2) :: add_interval lo hi t
 else
 let nlo = min lo lo2 in
 let nhi = max hi hi2 in
 add_interval nlo nhi t
 end

Circle one:

correct violates invariant **when**

lo = _______________________________

hi = _______________________________

x = _______________________________

and produces the following result

Grading Scheme: This version is correct.
5. List Recursion and Program Design (30 points total)

For this problem, you will use the program design process to implement a function called `sublist`. This function takes two lists and determines whether the second list is fully contained within the first. The second list may appear anywhere within the first list (not just at the beginning) and all of the elements of the second list must appear contiguously and in the same order. The `sublist` function should have a generic type.

For example, the following four test cases demonstrate the behavior of `sublist`:

```plaintext
;; run_test "[] is always a sublist" (fun () ->
  sublist [true;false] [])

;; run_test "sublist need not be at the start" (fun () ->
  sublist [1;1;1;2] [1;1;2])

;; run_test "all elements of second list must appear in first" (fun () ->
  not (sublist ['a';'b'] ['a';'b';'c']))

;; run_test "elements must occur contiguously" (fun () ->
  not (sublist [1;2;3] [1;3]))
```

You must use a helper function in your implementation of `sublist`, in part (e) below. In parts (a)-(d) of this problem, you will use the program design process to develop that helper function.

a. (0 points) The first step is to understand how your helper function should relate to `sublist`. You may want to look ahead to part (e) and think about how you will implement `sublist` using your helper function before completing the next steps.

In the space below, write a short description of what your helper function does. Although this part is worth no points, it will help us to understand your thinking as we grade your answers in parts (b)-(e).

Answer: Our helper function takes two lists and determines whether the second list is a prefix of the first list. Grading Scheme: In general, we used this answer to understand the general approach and not penalize students who took a different tactic too harshly.
b. (2 points) Next, define the interface of your helper function. This interface must be consistent with how you use your helper function in `sublist`. Write the type of your helper function as you might see it in a signature or `.mli` file.

```ocaml
val helper: 'a list -> 'a list -> bool
```

Grading Scheme: One point deduction for non-generic types, no deduction for syntax errors or answers that are “almost” correct. If the type does not match the above, but it is consistent with general approach taken, then no deduction.

c. (6 points) Now, write three different tests for your helper function. Put some thought into your answers; we will be grading your answers not just on correctness, but on how well your tests specify its behavior. Don’t forget to give each case a descriptive name.

Grading Scheme: We are looking for test cases that correctly specify the behavior of the helper function and exhaustively test it. A good test suite includes tests along these lines:

- at least one test that returns true and one test that returns false
- at least one test that returns a different answer from `sublist`
- at least one test where one of the inputs is nil.

Points were deducted for test cases that did not specify the helper function well or were otherwise redundant.

The tests must also be correct. Here correctness means that they be consistent with the description of the helper function in part (a) and the definition of the helper function in part (c). Some students wrote tests for `sublist` instead of their helper function and received a three point deduction (if the tests were otherwise correct).

d. (8 points) Now, implement your helper function in the space provided below. Don’t forget to include the type declarations for the arguments to your helper function, which should be consistent with your answer for part (b).

```ocaml
let rec helper (x : 'a list) (y : 'a list) : bool = begin match x, y with
| _, [] -> true
| [], _ -> false
| h :: t, h' :: t' -> h = h' && helper t t'
end
```

Grading Scheme: 2 points for first nil case, 2 points for second nil case, four points for last case. The implementation must be consistent with the description of the helper function in part (a) and the tests for the helper function in part (b). No deduction here for implementing a different helper function from the one above as long as it is correctly written and consistent with the description and the test.
e. (14 points) Finally, complete the definition of \texttt{sublist}

\begin{verbatim}
let rec sublist (x : 'a list) (y : 'a list) : bool =
 begin match x with
 | h :: t -> helper x y || sublist t y
 | [] -> y = []
 else

Grading Scheme: 3 point deduction for errors in the base case. 4 point deduction for not including a recursive call when the helper function fails. 8 point deduction for trying to implement \texttt{sublist} without a suitable recursive helper function (by trying to do too much in the implementation here or trying to do too much in the helper function itself). These versions either accept too few inputs (they reject \texttt{sublist [1;1;2] [1;2]}) or too many (they accept \texttt{sublist [1;2;3] [1;3]}). Other errors at discretion.
\end{verbatim}
Appendix: SET interface

The interface for the set abstract type.

```ocaml
module type SET = sig

  type 'a set

  val empty : 'a set
  val is_empty : 'a set -> bool
  val member : 'a -> 'a set -> bool
  val add : 'a -> 'a set -> 'a set
  val equals : 'a set -> 'a set -> bool
  val set_of_list : 'a list -> 'a set

  ...

end
```
Appendix: Binary Search Tree implementation

type tree =
 | Empty
 | Node of tree * int * tree

let rec lookup (t:tree) (n:int) : bool =
 begin match t with
 | Empty -> false
 | Node(lt, x, rt) ->
 if x = n then true
 else if n < x then lookup lt n
 else lookup rt n
 end

let rec insert (t:tree) (n:int) : tree =
 begin match t with
 | Empty -> Node(Empty, n, Empty)
 | Node(lt, x, rt) ->
 if x = n then t
 else if n < x then Node (insert lt n, x, rt)
 else Node(lt, x, insert rt n)
 end

let rec tree_max (t:tree) : int =
 begin match t with
 | Empty -> failwith "tree_max called on empty tree"
 | Node(_,x,Empty) -> x
 | Node(_,_,rt) -> tree_max rt
 end

let rec delete (t:tree) (n:int) : tree =
 begin match t with
 | Empty -> Empty
 | Node(lt,x,rt) ->
 if x = n then
 begin match (lt, rt) with
 | (Empty, Empty) -> Empty
 | (Empty, _) -> rt
 | (_, Empty) -> lt
 | (_,_) ->
 let y = tree_max lt in
 Node (delete lt y, y, rt)
 end
 else
 if n < x then Node(delete lt n, x, rt)
 else Node(lt, x, delete rt n)
 end
 end