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Nested Pattern Matching
Datatypes




What is the type of this expression?

[ (1,true); (0, false) ]

int * bool

int list * bool list

(int * bool) list

(int * bool) list list

none (expression is ill typed)

N

Answer: 3
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What is the type of this expression?

(1 =22 [1, 2 =2 [1, 3 2 [1)

int

int list

int list list

int list * int list * int list

int * int list * int list list

(int * int * int) list

none (expression is ill typed)

AT A

Answer: 4




Announcements

 Submit HW1 by midnight Tuesday

— Late policy: 10pt penalty for up to 24 hours
20pt penalty for 24-48 hours

* Register your clicker ID number on course website
— You should start seeing “Quizzes” on the submission page
— Name of quizis lecturedate: TP160125 is Today

— If you have “Not submitted” then we don’thave an ID number
for yourdata

— No way for me to "excuse" absences in the system. But, send
CAR anyways.

 Read Chapters5 and 6 of the course notes




Nested Patterns

* So far, we've seen simple patterns:

[ ] matches empty list

xsetl matches nonempty list

(a,b) matches pairs (tuples with 2 elts)

(a,b,c) matches triples (tuples with 3 elts)
* Like expressions, patterns can nest:

X 2 [] matches lists with 1 element

[ x] matches lists with 1 element

x::(ys:stl) matches lists of length at least 2

(x::Xs, yV::yYS) matches pairs of non-empty lists




What is the value of this expression?

let 1 = [1; 2] in

begin match 1 with

| x (2 y 1ttt > 1

| x :: [] -> 2

| x :: t -> 3

| [] -> 4
end

Answer: 1
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let 1 = [1; 2] in
begin match 1 with

| x ::
| X
| X

L]

end

y ::t > 1
L] -> 2
t -> 3

-> 4
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let 1 =1 :: 2 :: [ in
begin match 1 with
| x vy ::t > 1
| x :: [] -> 2
| x :: t -> 3
| [] -> 4
end
begin match 1:
| X 11y ::
| x :: []
| x :: t
| []

end

:2::[] with
ot > 1
-> 2
-> 3
-> 4




What is the value of this expression?

let 1 = [(2,true); (3,false)] in

begin match 1 with

| (x,false) :: tl -> 1

lw :: (X,y) :: z -> X

| X -> 4
end

Answer: 3
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Programming with Lists and Tuples

see zip.ml




Wildcard Pattern

 Another handy pattern is the wildcard pattern: _
::tl matches a non-empty list, but only names tail

(_,X) matches a pair, but only names the 2" part

* A wildcard pattern indicates that the value of the
corresponding subcomponentis irrelevant.

— And hence needs no name.




Unused Branches

* The branches in a match expression are considered
in order from top to bottom.

* Ifyou have “redundant” matches, then some later
branches might not be reachable.

— OCaml will give you a warning

let bad_cases (1 : int 1list) : int =
begin match 1 with

[:l -> @ This case matches more lists
M than that one does.
X.. )/

x::§::t1 => X + Yy (* unreachable *)
end
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Exhaustive Matches

e Pattern matching is exhaustive if there is a pattern for
every possible value

 Example of a non-exhaustive match:

let sum_two (1 : int list) : 1int =
begin match 1 with
| X:iiyii_ -> X+y
| -> failwith “l must have >= 2 elts”

end

 OCaml will give you a warning and show an example of
what isn’t covered by your cases

 The wildcard pattern and failwith are useful tools for
ensuring match coverage
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Recursive Function Pattern




Recursive function patterns

Recursive functions over lists follow a general pattern:

let rec length (1 : string list) : int =
begin match 1 with
| [] > 0
| ( x :: rest ) -> 1 + length rest
end

let rec contains (l:string list) (s:string) : bool =
begin match 1 with
| [] -> false
| ( X :: rest ) -> s =x || contains rest s
end
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Structural Recursion Over Lists

Structural recursion builds an answer from smaller components:

let rec f (1 : .. 1list) .. : .. =
begin match 1 with

| [] > .
| ( hd :: rest ) -> .. f rest ..
end

The branch for [ ] calculatesthevalue (£ [ ])directly.
— thisis the base case of the recursion

The branch for hd: : rest calculates

(f(hd: :rest))givenhdand(f rest).
—thisis the inductive case of the recursion
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Design Pattern for Recursion

3. Write test cases

If the maininputtothe programisanimmutablelist, make
sure the tests cover both empty and non-empty cases

4. Implementtherequired behavior

If the maininputtothe programisanimmutablelist,look for

a recursive solution...

. Is there a direct solution for the empty list?

. Suppose someone has given us a partial solution that works for
lists up to a certain size. Can we use it to build a better
solution that works for lists that are one element larger?
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Example: zip

* zip takes two lists of the same length and returns a
single list of pairs:
zip [1; 2; 31 [“a”; “b"; “c"] =
[(1,7a"); (2,"b"); (3,"c")]

let rec zip (11: int 1list)
(12: string list) : (int * string) list =
begin match (11, 12) with
I cl, [ -> [
| (X:: Xs, y:: ys) > (X, y):: (zip Xs ys)
| _ -> failwith "zip: unequal length 1lists”
end
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