Programming Languages
and Techniques
(C1S120)

Lecture 5
January 25t 2016

Nested Pattern Matching
Datatypes

What is the type of this expression?

[(1,true); (0, false)]

int * bool

int list * bool list

(int * bool) list

(int * bool) list list

none (expression is ill typed)

N

Answer: 3

CIS120

CIS120

What is the type of this expression?

(1 =22 [1, 2 =2 [1, 3 2 [1)

int

int list

int list list

int list * int list * int list

int * int list * int list list

(int * int * int) list

none (expression is ill typed)

AT A

Answer: 4

Announcements

 Submit HW1 by midnight Tuesday

— Late policy: 10pt penalty for up to 24 hours
20pt penalty for 24-48 hours

* Register your clicker ID number on course website
— You should start seeing “Quizzes” on the submission page
— Name of quizis lecturedate: TP160125 is Today

— If you have “Not submitted” then we don’thave an ID number
for yourdata

— No way for me to "excuse" absences in the system. But, send
CAR anyways.

 Read Chapters5 and 6 of the course notes

Nested Patterns

* So far, we've seen simple patterns:

[] matches empty list

xsetl matches nonempty list

(a,b) matches pairs (tuples with 2 elts)

(a,b,c) matches triples (tuples with 3 elts)
* Like expressions, patterns can nest:

X 2 [] matches lists with 1 element

[x] matches lists with 1 element

x::(ys:stl) matches lists of length at least 2

(x::Xs, yV::yYS) matches pairs of non-empty lists

What is the value of this expression?

let 1 = [1; 2] in

begin match 1 with

| x (2 y 1ttt > 1

| x :: [] -> 2

| x :: t -> 3

| [] -> 4
end

Answer: 1

CIS120

let 1 = [1; 2] in
begin match 1 with

| x ::
| X
| X

L]

end

y ::t > 1
L] -> 2
t -> 3

-> 4

CIS120

let 1 =1 :: 2 :: [in
begin match 1 with
| x vy ::t > 1
| x :: [] -> 2
| x :: t -> 3
| [] -> 4
end
begin match 1:
| X 11y ::
| x :: []
| x :: t
| []

end

:2::[] with
ot > 1
-> 2
-> 3
-> 4

What is the value of this expression?

let 1 = [(2,true); (3,false)] in

begin match 1 with

| (x,false) :: tl -> 1

lw :: (X,y) :: z -> X

| X -> 4
end

Answer: 3

CIS120

Programming with Lists and Tuples

see zip.ml

Wildcard Pattern

 Another handy pattern is the wildcard pattern: _
::tl matches a non-empty list, but only names tail

(_,X) matches a pair, but only names the 2" part

* A wildcard pattern indicates that the value of the
corresponding subcomponentis irrelevant.

— And hence needs no name.

Unused Branches

* The branches in a match expression are considered
in order from top to bottom.

* Ifyou have “redundant” matches, then some later
branches might not be reachable.

— OCaml will give you a warning

let bad_cases (1 : int 1list) : int =
begin match 1 with

[:l -> @ This case matches more lists
M than that one does.
X..)/

x::§::t1 => X + Yy (* unreachable *)
end

CIS120

Exhaustive Matches

e Pattern matching is exhaustive if there is a pattern for
every possible value

 Example of a non-exhaustive match:

let sum_two (1 : int list) : 1int =
begin match 1 with
| X:iiyii_ -> X+y
| -> failwith “l must have >= 2 elts”

end

 OCaml will give you a warning and show an example of
what isn’t covered by your cases

 The wildcard pattern and failwith are useful tools for
ensuring match coverage

CIS120

Recursive Function Pattern

Recursive function patterns

Recursive functions over lists follow a general pattern:

let rec length (1 : string list) : int =
begin match 1 with
| [] > 0
| (x :: rest) -> 1 + length rest
end

let rec contains (l:string list) (s:string) : bool =
begin match 1 with
| [] -> false
| (X :: rest) -> s =x || contains rest s
end

CIS120/Spring2014

Structural Recursion Over Lists

Structural recursion builds an answer from smaller components:

let rec f (1 : .. 1list) .. : .. =
begin match 1 with

| [] > .
| (hd :: rest) -> .. f rest ..
end

The branch for [] calculatesthevalue (£ [])directly.
— thisis the base case of the recursion

The branch for hd: : rest calculates

(f(hd: :rest))givenhdand(f rest).
—thisis the inductive case of the recursion

CIS120/Spring2014

Design Pattern for Recursion

3. Write test cases

If the maininputtothe programisanimmutablelist, make
sure the tests cover both empty and non-empty cases

4. Implementtherequired behavior

If the maininputtothe programisanimmutablelist,look for

a recursive solution...

. Is there a direct solution for the empty list?

. Suppose someone has given us a partial solution that works for
lists up to a certain size. Can we use it to build a better
solution that works for lists that are one element larger?

CIS120/Spring2014

Example: zip

* zip takes two lists of the same length and returns a
single list of pairs:
zip [1; 2; 31 [“a”; “b"; “c"] =
[(1,7a"); (2,"b"); (3,"c")]

let rec zip (11: int 1list)
(12: string list) : (int * string) list =
begin match (11, 12) with
I cl, [-> [
| (X:: Xs, y:: ys) > (X, y):: (zip Xs ys)
| _ -> failwith "zip: unequal length 1lists”
end

CIS120

