Programming Languages
and Techniques
(C1S120)

Lecture 6
January 27, 2016

Datatypes and Trees

Announcements

Great job on HW1!

Homework 2 is available
— due Tuesday, February 2nd

Lecture attendance grade (i.e. clickers)

— Flexibility for occasional missed lectures due to minor
emergencies (i.e. it’s OK to miss a few lectures)

Please complete the CIS 120 Demographics Survey
— See Piazza (or this week’s labs)

Read Chapter 6 and 7

Building Datatypes

* Programming languages provide a variety of ways of
creating and manipulating structured data

* We have already seen:
— primitive datatypes (int, string, bool, ...)
— lists (intlist, stringlist, stringlistlist, ...)
— tuples (int * int, int * string, ...)

* Rest of Today:
— user-defined datatypes
— type abbreviations

HW 2 Case Study: Evolutionary Trees

* Problem:reconstruct evolutionary trees from biological data.
— What are the relevant abstractions?
— How can we use the language features to define them?
— How do the abstractions help shape the program?

Enumerated List for
NUCleotides el ots Apes
7 and lots
G G of time |
? Greater Apes Lesser Apes
< |G I
A - '
' A
T
A
T -G
N orangutan
é white-cheeked gibbon
G) <
_‘ T
A
C _ C .
\ C gorilla
T siamang
A

LF-).i‘l—e'ated gibbon
Suggested reading: CIS120
Dawkins, The Ancestor's Tale: A Pilgrimage to the Dawn of Evolution

chimpanzee

DNA Computing Abstractions

* Nucleotide
— Adenine (A), Guanine (G), Thymine (T), or Cytosine (C)
* Helix
— a sequence of nucleotides: e.g. AGTCCGATTACAGAGA...
— genetic code for a particular species (human, gorilla, etc)

* Phylogenetic tree

— Binary tree with helices (species)
at the nodes and leaves

AAAA
ACAT | AAGA

| | |
GCAT TCGT TAGA GAGA

Simple User-Defined Datatypes

e OCaml lets programmers define new datatypes

‘) type name

type dqy — type /keyword (musLbe lowercase)

bunday tyéé nuclestide =

Monday A

Tuesday C

Wednesday G

Thursday

Friday ! ::::E§§\

>atu r'day construm\mes (tags)

(must be capitalized)

 The constructors are the values of the datatype
— e.g. Aisanucleotideand [A; G; C]isanucleotidelist

CIS120

Pattern Matching Simple Datatypes

e Datatype values can be analyzed by pattern matching:

let string_of_n (n:nucleotide) : string
begin match n with

A -> “adenine”

C -> “cytosine”

G -> “guanine”

T -> “thymine”

end

* Thereis one case per constructor
— you will get a warning if you leave out a case or list one twice

* As with lists, the pattern syntax follows that of the
datatype values (i.e. the constructors)

CIS120

A Point About Abstraction

 We could represent data like this by using integers:
— Sunday =0, Monday =1, Tuesday = 2, etc.
* But:

— Integers supportdifferent operations than days do:
Wednesday - Monday = Tuesday

— There are more integers than days (What dayis 177)

* Confusingintegers with days can lead to bugs

— Many scripting languages (PHP, Javascript, Perl, Python,...)
violate such abstractions (true == 1 == “1"), leading to pain
and misery...

Most modern languages (Java, C#, C++, OCaml,...)
provide user-defined types for this reason.

Type Abbreviations

e OCaml also lets us name types without make new
abstractions:

type helix = nucleotide list
type codon = nucleotide * nucleotide
'\ ’\ \ * nucleotide
"\ Y
type T
type keyword name definition in terms of existing types

no constructors!

* j.e. acodonis the same thing a triple of nucleot1ides
let x : codon = (A,C,0O)
e Makes code easier to read & write

CIS120

Data-Carrying Constructors

* Datatype constructors can also carry values

type measurement =

Missing

NucCount of nucleotide * int
CodonCount of codon * int

/
/ \)

Y
keyword ‘of Constructors may take a

tuple of arguments

* Values of type ‘measurement’include:
Missing
NucCount(A, 3)
CodonCount(CA,G, D, 17

CIS120

Pattern Matching Datatypes

e Pattern matching notation combines syntax of tuples
and simple datatype constructors:

let get_count (m:measurement) : int =
begin match m with

Missing -> 0

NucCount(_, n) ->n

CodonCount(_, n) -> n
end

* Datatype patterns bind variables (e.g. ‘n’) just like
lists and tuples

CIS120

type nucleotide = | A | C | G | T

_ type helix = nucleotide list
Clickers, please...

What is the type of this expression?

[A;C]

nucleotide

helix

nucleotide list

string * string

nucleotide * nucleotide
none (expression is ill typed)

@) P g 8 Y =

Answer: both 2 and 3

CIS120

Clickers, please...

type helix = nucleotide list

type nucleotide = | A | C | G | T

What is the type of this expression?

(A, IIAII)

@) P g 8 Y =

nucleotide

nucleotide list

helix

nucleotide * string

string * string

none (expression is ill typed)

Answer: 4

CIS120

Recursive User-defined Datatypes

» Datatypes can mention themselves!

type tree =
| Leaf of helix

| 7fode of tree * helix * tree

/ \‘ =0
base constructor Node carries a recursive
(nonrecursive) tuple of values definition

* Recursive datatypes can be taken apart by pattern
matching (and recursive functions).

CIS120

Syntax for User-defined Types

type tree =
| Leaf of helix
| Node of tree * helix * tree

* Example values of type tree

let t1 = Leaf [A;G]
let t2 = Node (Leaf [G], [A;T], Leaf [A])
let t3 = -
Node (Leaf [T] ; Constr-uc’.cors.
[T ; -I-:I ’ (note capitalization)

Node (Leaf [G;C], [G], Leaf [1))

CIS120

type tree =
| Leaf of helix
| Node of tree * helix * tree

Clickers, please...

How would you construct this tree in OCaml?
[AT]
VRN
[A] [G]
1. Leaf [A;T]
2. Node (Leaf [G], [A;T], Leaf [AD)
3. Node (Leaf [Al, [A;T], Leaf [G])
4. Node (Leaf [T], [A;T1,
Node (Leaf [G;C], [G], Leaf [1))

5. None of the above

CIS120
Answer: 3

Clickers, please...

Have you ever programmed with trees before? \

1. vyes
2. no
3. not sure

CIS120

Trees are everywhe '

Family trees

{uf(u_ -rb;.-/m
bk re
oafiie L Aenms
P e

oty

| Waes h“a
el b ginive
it Joi 3

Vha
Harud N* i, J

- ¢
- i . .)
. | « ”4"- L»If/a)ﬂﬁ: - ?.s..‘nhh s ‘”mlf_u loee u'uu" Caranlsone ‘,_-,}/,".‘
e L R - W Sk gebfer s, Mw '
; i Siefen & i by of & thamhbeeg. | Kosinn bty 3.
| L] f g 3 .
0 viee A vt S M‘u,;u
i~ Ak € frad fopuoty
N chanhbosy- s

- _—
'o-!é.:'-’n --’/.-'l.,.- -'1‘:-
..h- e gy N
W s Nanid by -

5

CIS120

Organizational charts

CoRPORATE HTIERARLHY

CIS120

Game trees

x/—\
[T
R
’j{_o X O

CCCCCC

Natural-Language Parse Trees

S
NP VP
TN /\
D N \Y NP

| |
the chef coéks tf/A\ﬁy

| |
the soup

CIS120

Filesystem Directory Structure

v [classes
v [cis110
v [12fa
» [trunk
» [12su
v [cis120
» [11fa
» @ 11sp
v [12fa
» [doc
» [] exams
v [hw
"~ assert.mi
© assert.mli
" CommonExportMakefile
- CommonjavaMakefile
- CommonMakefile
CommonOcaml|Makefile

CIS120

Domain Name Hierarchy

/N

com net
cornell ... upenn cisco..yahoo nasa ... nsf arpa ... navy ...

SINNANNAN A

cis seas Wwharton ..

AWANAY

A particular form of tree-structured data

Binary Trees

root node
root’s root’s
left child right child

left subtree

€ |eaf node

" empty

A binary tree is either empty, or a node with at most
two children, both of which are also binary trees.

A leaf is a node whose children are both empty. CIs120

Binary Trees in OCaml

type tree =
| Empty
| Node of tree * int * tree

let t : tree =
Node (Node (Empty, 1, Empty),
3 p—

Node (Empty, 2,
Node (Empty, 4, Empty)))

s CIS120

Representing trees

type tree
| Empty
| Node of tree * int * tree

Node (Node (Empty, @, Empty),
1,
Node (Empty, 3, Empty))

Node (Empty, @, Empty) é

Empty i}

see trees.ml

treeExamples.ml

