Programming Languages
and Techniques
(C1S120)

Lecture 8
February 1, 2016

BST Delete
Generics

(Chapters 7 & 8)




Announcements

Read Chapters 7 & 8 (BSTs, generics) of
ecture notes

Read Chapter 9 of lecture notes (Higher-order
functions)

HW?2 due tomorrow at midnight

My office hours: Today 3:30 — 5:00




Big idea: find things faster by searching less



Trees as Containers

* Like lists, binary trees aggregate data

type tree =
| Empty
| Node of tree * int * tree

 As wedid for lists, we can write pure functions for working
with this container
— lookup: determine whether the tree contains a particular element
— insert: return a new tree containing a particular element

— delete: return a new tree with a particular element removed (if
present)




Binary Search Trees

 Abinary search tree (BST)is a binary tree with some
additional invariants*:

*Node(lt,x,rt) isaBSTif
- 1t and rt are both BSTs
- allnodesof 1t are < x
- allnodesof rt are > x
* Emptyis a BST

 The BST invariant means that container functions can take
time proportional to the height instead of the size of the tree.

CIS120




Constructing BSTs from other BSTs

Deleting an element

delete :: tree -> int -> tree




Deletion — No Children: (delete t 3)

3<5




Deletion — No Children: (delete t 3)

If the node to be deleted has no
children, simply replace it by
the Empty tree.




Deletion — One Child: (delete t 7)




Deletion — One Child: (delete t 7)

If the node to be delete has one
child, replace the deleted node
by its child.




Deletion — Two Children: (delete t 5)




Deletion — Two Children: (delete t 5)

If the node to be delete has two
children, promote the maximum
child of the left tree.




How to Find the Maximum Element?

What is the max
element of this
subtree?




How to Find the Maximum Element?

Just for fun, how
do we find the
max element of
the whole tree?




Tree Max: A partial* function

let rec tree_max (t:tree) : int =
begin match t with
| Node(_,x,Empty) -> X
| Node(_,_,rt) -> tree_max rt
| _ -> failwith “tree_max called on Empty?”
end

* We never call tree_maxon an empty tree

— This is a consequence of the BST invariants and the case analysis done
by the delete function

* BST invariant guaranteesthatthe maximum-value nodeis
farthestto the right

* Partial, in this context, means “not defined for all inputs”.



trees.ml



Deleting From a BST

let rec delete (t: tree) (n: int) : tree =
begin match t with
| Empty -> Empty
| Node(lt, x, rt) ->
if X = n then
begin match (1t, rt) with
| (Empty, Empty) -> Empty
| (Node _, Empty) -> 1t
| (Empty, Node _) -> rt
| _ -> let m = tree_max 1t 1in
Node(delete 1t m, m, rt)
end
else if n < x then Node(delete 1t n, x, rt)
else Node(lt, x, delete rt n)
end




If we insert a label n intoa BST and then
immediately delete n, do we always get
back a tree of exactly the same shape?

1. yes
2. no

Answer: no, what if the node is in the tree



If we insert a value ninto a BST that does
not already contain n and then
immediately delete n, do we always get
back a tree of exactly the same shape?

1. yes
2. no

Answer: yes




If we delete n from a BST (containing n) and
then immediately insert n again, do we
always get back a tree of exactly the same
shape?

1. yes
2. no

Answer: no, what if we delete the root?




Generic Functions and Data

Wow, implementing BSTs took quite a bit of typing...
Do we have to repeat it all again if we want to use BSTs
containing strings, or characters, or floats?

or
How not to repeat yourself, Part |.




Structurally Identical Functions

 Observe: many functionson lists, trees, and other datatypes
don’t depend on the contents, only on the structure.

« Compare: lengthfor“int list”vs.“string List”

CIS120

let rec length (l: : int =
th

begin match 1 wi

| [] > 0

| _::tl -> 1 + length tl
end

let rec length (l: @ng list) : int
begin match 1 with
| [1 -> 0
| _::tl -> 1 + length tl
end

II\‘ f

The functions are
identical, except
for the type
annotation.




Notation for Generic Types

 OCaml provides syntax for functions with generic types

let rec length : int =
begin match 1 :

| [] > 0
| _::tl -> 1 + (length t1)
end

* Notation: 'a isa type variable; the function Length can
beusedona t 1list forany type t.

* Examples:
— length [1;2;3] use length on an int list
— length [“a”;”b”;”c”] use length on a string list

CIS120




Generic List Append

The return type is the
Note that the two input same as the inputs.

lists must have the same
type of elements.

let rec append (11:'a \"List) (12:'\aiist) . 'a {ist =
begin match 11 with
| [] > 12
| h::tl -> h::(append tl 12)

end /

/
Pattern matching works over generic types!

In the body of the branch:
h has type 'a
tl has type "a list

CIS120




Generic Zip

Functions can operate
over multiple generic

types.

. . \ . .
let rec zip (11:'a list) (12:'b list) : ("a*'b) list =
begin match (11,12) with
| (hl::t1, h2::t2) -> (hl,h2)::(zip t1 t2)
l _ > []

end

* Distinct type variables can be instantiated differently:
Z.i-p [1;2;3] [“a”;”b”;”c”:l

* Here, "aisinstantiatedtoint, 'b to string

* Result is

[(1,%a");(2,7b");(3,%c”)]
oftype (1nt * string) list

CIS120




User-Defined Generic Datatypes

 Recall ourintegertree type:

type tree =
| Empty
| Node of tree * int * tree

 We can define a generic version by adding a type parameter,

like this: Parameter 'a
P

P used here
type 'a tree =

| Empty

| Node of "a tree * "a * "a tree
\ /

\ /
Note that the recursive
CIS120 uses also mention 'a




User-Defined Generic Datatypes

 BST operations can be generictoo; only change is to the type
annotation

(* Insert n into the BST t *)

let rec insert (t:'a tree) (n:'a) : ’a tree =
begin match t with
| Empty -> Node(Empty,n,Empty)
| Node(lt,x,rt) ->
1f X = n then t
else n < X then Node(insert 1t n, x, rt)

else Nodée X, 1hsert rt n)
end

N

Equality and comparison are generic — they work for any
type of data too.

CIS120




Does the following function typecheck?

let f (1 : "a 1list) : 'b list =
begin match 1 with

| [] -> true::1

| _::rest -> 1::1

end

1. yes
2. no

Answer: no, even though the return type is generic, the two branches
must agree (so that ‘b can be consistently instantiated).

CIS120



Does the following function typecheck?

let f & : 'a) : 'a =
X + 1

;53 print_endline (f “hello”)

1. yes
2. no

Answer: no, the type annotations and uses of f aren’t consistent

CIS120



Higher-order Programs

or

How not to repeat yourself, Part II.



