Programming Languages
and Techniques
(C1S120)

Lecture 14
February 15%, 2016

Sequencing, Mutable State
Chapters 12, 13, 14

Announcements

Midterm 1
— Tomorrow evening, 6:15 PM
e Lastnames A -Schwartz MEYH B1
* Last names Shah-7 DRLB A8

— Covers lecture material through last Wednesday

* Pure, value-oriented programming up to option
Types

— Review materials (old exams) on course website

— Should have received email confirmation about
make-up exam

* My office hours: TODAY 3:30 — 5:00

Mutable state & effectful
programming

CCCCCC

Why Pure Functional Programming?

* Simplicity
— small language: arithmetic, local variables,

recursive functions, datatypes, pattern matching,
generic types/functions and modules

— simple substitution model of computation

e Persistent data structures
— Nothing changes; retains all intermediate results Being vs Doing
— Good for version control, fault tolerance, etc.

* Typecheckers give more helpful errors
— Once your program compiles, it needs less testing
— Optionsvs. NullPointerException

* Easier to parallelize and distribute

— No implicit interactions between parts of the
program.

— Allof the behavior of a function is specified by its
arguments

CIS120

e Action at a distance

— allow remote parts of a programto
communicate / share information without
threadingthe information through all the points
in between

* Data structures with explicit sharing
— e.g. graphs

— without mutation, itis only possible to build
trees — no cycles

» Efficiency/Performance

— some data structures have imperative versions
with better asymptoticefficiency than the best
declarative version

* Re-using space (in-place update)
 Random-access data (arrays)

* Direct manipulation of hardware
— device drivers, etc.

CIS120

A new view of imperative programming

Java (and C, C++, C#) OCaml (and Haskell, etc.)

* Nulliscontainedin (almost) ¢ No null. Partiality must be
every type. Partial functions made explicit with options.
can return null.

* Codeis a sequence of * Codeis an expression that
statemgnts that d? has a value. Sometimes
something, sometimes computing that value has
using expressionsto other effects.

compute values. :
e References are immutable

* Referencesare mutable by by default, must be

default, must be explicitly explicitly declared to be
declared to be constant mutable

Commands, Sequencing and Unit

What is the type of print_string?

Sequencing Commands and Expressions

We can sequence commands inside expressions using ‘;’

— unlike in C, Java, etc., ;" doesn’t terminate a statement it separates a
command from an expression

let f (x:int) : int =
print_string “f called with ”;
print_string (string_of_int x);

do not use ‘;’ here! note the use of ’;’ here

The distinction between commands & expressions is artificial.
« print_stringisafunctionoftype: string -> unit

e Commands are actually just expressions of type: unit

CIS120

unit: the trivial type

e Similarto "void" in Java or C

* Forfunctionsthatdon't take any arguments

let f OO : 1n
let y : 1int

t =3 val f : unit -> 1int
f O val y : 1int

e Also for functionsthat don't returnanything, such as testing
and printing functions a.k.acommands:

(* run_test : string -> (unit -> bool) -> unit *)
;5 run_test “TestName” test

(* print_string : string -> unit *)
;5 print_string “Hello, world!”

CIS120

unit: the boring type

* Actually, ()is a value just like any other value.

* For functionsthatdon't take any interesting arguments

let f OO : 1n
let y : 1int

t =3 val f : unit -> 1int
f O val y : 1int

* Also for functionsthat don't returnanythinginteresting, such
as testing and printing functions a.k.a commands:

(* run_test : string -> (unit -> bool) -> unit *)
;5 run_test “TestName” test

(* print_string : string -> unit *)
;5 print_string “Hello, world!”

CIS120

unit: the first-class type

 Can definevalues of type unit

let x : unit = O val x : unit

e (Can pattern match unit (even in function definitions)

let z = begin match x with fun O -> 3
| O > 4

end

* [stheresult of an implicit else branch:

;5 1f z <> 4 then L s if z <> 4 then
failwith "oops"] failwith "oops"
else O

CIS120

Sequencing Commands and Expressions

* Expressions of type unit are useful because of their side
effects

— e.g. printing, changing the value of mutable state

let f (x:int) : int =
print_string “f called with ”;
print_string (string_of_int x);

~_

note the use of “:” here
do not use ;' here! !

 We can think of ;" as an infix function of type:
unit -> ‘a -> ‘a

CIS120

CIS120

What is the type of f in the following program:

let f (x:int) =
print_int (X + x)

. unit -> 1int

. unit -> unit

. 1nt -> unit

. 1nt -> 1int

. f 1s 111 typed

ol WN -

CIS120

What is the type of f in the following program:

let f (x:int) =
(print_int x);
(X + x)

. unit -> 1int

. unit -> unit

. 1nt -> unit

. 1nt -> 1int

. f 1s 111 typed

ol WN -

Immutable Records

 Recordsare like tuples with named fields:

(* a type for representing colors *) Curly braces

Semicolons after
record components.

type rgb = {r:int; g:int; b:int;} « l///aroumdrecord.

(* some example rgb values *)

let red : rgb = {r=255; g=0; b=0;}
let blue : rgb = {r=0; g=0; b=255;}
let green : rgb = {r=0; g=255; b=0;}
let black : rgb = {r=0; g=0; b=0;}
let white : rgb = {r=255; g=255; b=255;}

* Thetypergbisa recordwiththreefields:r, g, and b
— fields can have any types; they don’t all have to be the same

 Record values are created using this notation:

{fieldl=vall; field2=val?l;..}

CIS120

Field Projection

”

* Thevaluein arecordfield can be obtained by using “dot
notation: record.field

(* a type for representing colors *)
type rgb = {r:int; g:int; b:int;}

(* using 'dot' notation to project out components *)
(* calculate the average of two colors *)
let average_rgb (cl:rgb) (c2:rgb) : rgb =

{r = (cl.r + c2.r) / 2;
g=(cl.g + c2.g) / 2;
b = (cl.b + c2.b) / 2;}

CIS120

Mutable Record Fields

By default, all record fieldsare immutable—once initialized,
they can never be modified.

 OCamlsupports mutable fields that can be imperatively
updated by the “set” command: record.field <- val

note the ‘mutable’ keyword

/

type point = {mutable x:int; mutﬁﬁfg/;?int}

let p0 = {x=0; y=0}

(* set the x coord of p@ to 17 *)

;3 pO.x <- 17

;5 print_endline ("p@.x = " A (string_of_int p@.x))

S~

“in-place” update of p0.x

CIS120

Defining new Commands

* Functionscan assign to mutable record fields

 Notethatthe returntype of ‘<-"is unit

type point = {mutable x:int; mutable y:int}

(* a command to shift a point by dx,dy *)

let shift (p:point) (dx:int) (dy:int) : unit =
p.X <- p.X + dX;
p.y <- p.y + dy

CIS120

type point = {mutable x:int; mutable y:int}

What answer does the following expression produce?

let pl = {x=0; y=0} 1in
pl.x <- 17;
pl.x

1.17
2.42

3.0
4. runtime error

Answer: 17

CIS120

type point = {mutable x:int; mutable y:int}

What answer does the following expression produce?

let pl = {x=0; y=0} 1in
let p2 = pl 1n

pl.x <- 17;
p2.x <- 42;
pl.x

1.17

2.42

3.0

4. runtime error

Answer: 42

CIS120

What answer does the following function produce when called?

let f (pl:point) (p2:point) : int =
pl.x <- 17;
p2.x <- 42;
pl.x
1. 17
2. 42
3. sometimes 17 and sometimes 42
4. f isilltyped

Answer: sometimes 17 and sometimes 42

CIS120

Issue with Mutable State: Aliasing

e What doesthis function return?

let f (pl:point) (pZ2:point) : int =

pl.x <- 17/;
p2.xX <- 42;
pl.x

(* Consider this call to f *)
let ans = f p@ pod

Two identifiers are said to be aliases if they both name the
same mutable record. Inside f,p1, and p2 might be aliased,
depending on which arguments are passed to f.

CIS120

Mutable Records

* Thereason for introducing all the ASM stuffis to make the

model of heap locations and sharing explicit.

— Now we can say what it means to mutate a heap value in place.

type point = {mutable x:int; mutable y:int}

let pl : point = {x=1; y=1;}
let p2 : point = pl
let ans : 1int = (p2.x <- 17; pl.x)

* We draw a record in the heap like this:
— The doubled outlines indicate that those

cells are mutable X .
— Everything else is immutable Y !
— (field names don’t actually take up space) A point record

in the heap.

CIS120

Allocate a Record

Workspace Stack
let pl : point = {x=1; y=1;}
let p2 : point = pl

let ans : int =
p2.x <- 17; pl.x

CIS120

Heap

Allocate a Record

Workspace Stack

-

pl

let pl1 : point

let p2 : point

let ans : int =
p2.x <- 17; pl.x

CIS120

Heap

Let Expression

Workspace

Stack

let pl : point

-

let p2 : point
let ans : int =
p2.x <- 17; pl.x

pl

CIS120

Heap

Workspace Stack

let p2 : point = pl
let ans : int =
p2.x <- 17; pl.x

CIS120

Look Up ‘pl’

Workspace Stack Heap

pl ¢1//’_,;#)(

let p2 : point = pl

let ans : int =
p2.x <- 17; pl.x

CIS120

Look Up ‘pl’

Workspace Stack

Heap

pl

let p2 : point =

let ans : int =
p2.x <- 17; pl.x

CIS120

Let Expression

Workspace Stack Heap

pl X

let p2 : point =

let ans : int =
p2.x <- 17; pl.x

CIS120

Workspace Stack Heap

/\/X 1‘
. 2 //\/y 1
let ans : 1nt = P

p2.x <- 17; pl.x

Note: pland p2 are references to the same heap record.
They are aliases — two different names for the same thing.

CIS120

Workspace

let ans : int =
p2.x <- 17; pl.x

CIS120

Workspace

let ans : int =
X <= 17; pl.x

CIS120

Assign to x field

Workspace Stack
pl
: 2
let ans : 1nt = P

e . X <= 17; pl.x

CIS120

Heap

Assign to x field

Workspace Stack Heap
pl | « /\/x 17
. 2 //\/ y
let ans : 1nt = P
O; pl.x

This is the step in which the ‘imperative’ update occurs.
The mutable field x has been modified in place to
contain the value 17.

CIS120

Sequence ;" Discards Unit

Workspace Stack

pl

p2

let ans : int =

i

Q5 pl.x

CIS120

Heap

X

17

Workspace

let ans : int =
pl.x

CIS120

Workspace

let ans : int =
.X

CIS120

Project the x’ field

Workspace Stack
pl
: 2
let ans : 1nt = P

B

Heap

17

CIS120

Project the x’ field

Workspace

Stack

let ans :

17

int =

pl

p2

LSk

CIS120

Heap

17

Let Expression

Workspace

Stack

let ans : int =
17

pl

CIS120

Heap

17

G VAL

Push ans

Workspace

Stack

Heap

CIS120

ans| 17

17

What answer does the following function produce when called?

let f (pl:point) (p2:point) : int =
pl.x <- 17;
let z = pl.x 1n
p2.x <- 42;
Z
1. 17
2. 42
3. sometimes 17 and sometimes 42
4.f isill typed

Answer: 17

CIS120

