Programming Languages
and Techniques
(C1S120)

Lecture 15
February 17, 2016

Mutable Queues
Lecture notes: Chapter 16

type point = {mutable x:int; mutable y:int}

What answer does the following expression produce?

let pl = {x=0; y=0} 1in
let p2 = pl 1n

pl.x <- 17;
p2.x <- 42;
pl.x

1.17

2.42

3.0

4. runtime error

Answer: 42

CIS120

Allocate a Record

Workspace Stack
let pl : point = {x=1; y=1;}
let p2 : point = pl

let ans : int =
p2.x <- 17; pl.x

CIS120

Heap

Allocate a Record

Workspace Stack

-

pl

let pl1 : point

let p2 : point

let ans : int =
p2.x <- 17; pl.x

CIS120

Heap

Let Expression

Workspace

Stack

let pl : point

-

let p2 : point
let ans : int =
p2.x <- 17; pl.x

pl

CIS120

Heap

Workspace Stack

let p2 : point = pl
let ans : int =
p2.x <- 17; pl.x

CIS120

Look Up ‘pl’

Workspace Stack Heap

pl ¢1//’_,;#)(

let p2 : point = pl

let ans : int =
p2.x <- 17; pl.x

CIS120

Look Up ‘pl’

Workspace Stack

Heap

pl

let p2 : point =

let ans : int =
p2.x <- 17; pl.x

CIS120

Let Expression

Workspace Stack Heap

pl X

let p2 : point =

let ans : int =
p2.x <- 17; pl.x

CIS120

Workspace Stack Heap

/\/X 1‘
. 2 //\/y 1
let ans : 1nt = P

p2.x <- 17; pl.x

Note: pland p2 are references to the same heap record.
They are aliases — two different names for the same thing.

CIS120

Workspace

let ans : int =
p2.x <- 17; pl.x

CIS120

Workspace

let ans : int =
X <= 17; pl.x

CIS120

Assign to x field

Workspace Stack
pl
: 2
let ans : 1nt = P

e . X <= 17; pl.x

CIS120

Heap

Assign to x field

Workspace Stack Heap
pl | « /\/x 17
. 2 //\/ y
let ans : 1nt = P
O; pl.x

This is the step in which the ‘imperative’ update occurs.
The mutable field x has been modified in place to
contain the value 17.

CIS120

Sequence ;" Discards Unit

Workspace Stack

pl

p2

let ans : int =

i

Q5 pl.x

CIS120

Heap

X

17

Workspace

let ans : int =
pl.x

CIS120

Workspace

let ans : int =
.X

CIS120

Project the x’ field

Workspace Stack
pl
: 2
let ans : 1nt = P

B

Heap

17

CIS120

Project the x’ field

Workspace

Stack

let ans :

17

int =

pl

p2

LSk

CIS120

Heap

17

Let Expression

Workspace

Stack

let ans : int =
17

pl

CIS120

Heap

17

G VAL

Push ans

Workspace

Stack

Heap

CIS120

ans| 17

17

What do the Stack and Heap look like after simplifying the following code on the
workspace?

let pl = {x=0; y=0} 1in
let p2 = pl 1n
pl.x <- 17;
let z = pl.x 1n
p2.x <- 42;
pl.x
Stack Heap Stack Heap
1| —r——{x [p1| ep——fx |17
p2 '/f/ [@ p2| ~| [z
z |17 z |17 X 42
y [@
1. 2.

CIS120 Answer: 1

Reference and Equality

=VS. ==

Reference Equality

 Suppose we have two counters. How do we know whether
they share the same internal state?
— type counter = { mutable count : 1int }
— We could increment one and see whether the other’s value changes.
— But we could also just test whether the references alias directly.

e Ocamluses ‘== to mean reference equality:

— two reference values are ‘==’ if they point to the same object in the
heap; so: Stack Heap
rZ == r3 1 .//\/ count @“

not (rl == r2) 2 AT —

count @l
rl = r2 I
r3 8

CIS120

Structural vs. Reference Equality

o Structural (in)equality: v1 = vZ vl <> vZ

— recursively traverses over the structure of the data, comparing the two
values’” components for structural equality

— function values are never structurally equivalent to anything
— structural equality can go into an infinite loop (on cyclic structures)

— appropriate for comparing immutable datatypes

* Reference (in)equality: V1 == vZ2 vl 1= vZ2
— Only looks at where the two references pointin the heap
— function values are only equal to themselves

— equates strictly fewer things than structural equality
— appropriate for comparing mutable datatypes

CIS120

What is the result of evaluating the following expression?

let pl : point = { x =0; y =0; } 1in
let p2 : point = pl in

. true

. false
runtime error
compile-time error

pwNR

Answer: true

CIS120

What is the result of evaluating the following expression?

let pl : point = { x =0; y =0; } 1in
let p2 : point = pl in

pl == p2

. true

. false
runtime error
compile-time error

pwNR

Answer: true

CIS120

What is the result of evaluating the following expression?

let p1 : point = { x = 0; y
let p2 : point = { x = 0; y
1. true
2. false
3. runtime error
4. compile-time error

Answer: false

CIS120

What is the result of evaluating the following expression?

let p1 : point = { x =0; y =0; } 1in
let p2 : point = { x =0; y =0; } 1in
let 11 : point list = [pl] 1in
let 12 : point list = [p2] in
11 = 12

. true

. false

runtime error
compile-time error

pwNR

Answer: true

CIS120

What is the result of evaluating the following expression?

let p1 : point = { x =0; y =0; } 1in
let p2 : point = pl in

let 11 : point list = [pl] 1in
let 12 : point list = [p2] in
11 == 12

. true

. false

runtime error
compile-time error

pwNR

Answer: false

CIS120

Putting State to Work

Mutable Queues

Announcements

e HW 4: Mutable Queues is available
— Due: Tuesday, February 16th at 11:59 pm

CIS120

CIS120

Have you ever implemented the mutable data
structure called a linked list, in any language?

1.yes
2.Nno
3. not sure

A design problem

Suppose you are implementing a website to sell tickets to a
very popular music event. To be fair, you would like to allow

people to select seats first come, first served. How would you
do it?

Understand the problem

— Some people may visit the website to buy tickets while others are still
selecting their seats

— Need to remember the order in which people purchase tickets

Define the interface

— Need a data structure to store ticket purchasers

— Need to add purchasers to the end of the line

— Need to allow purchasers at the beginning of the line to select seats
— Both kinds of access must be efficient to handle the volume

(Mutable) Queue Interface

module type QUEUE = We can tell, just looking at this
sig interface, that it is fora
(* abstract type *) MUTABLE data structure. How?

type 'a queue |
Because queues are mutable,
(* Make a new, empty queue *) we must allocate a new one
val create : unit -> 'a queue every time we need one.

Adding an element to
the queue returns unit
because it modifies the
given queue.

(* Determine 1f the queue 1s empty *)
val 1s_empty : 'a queue -> bool

(* Add a value to the end of the queue *)
val enqg : 'a -> 'a queue -> unit

(* Remove the first value (1if any) and return it *)

val deq : 'a queue -> 'a

end
CIS120

Specify the behavior via test cases

let test () : bool =
let g : 1nt queue = create () 1n
enqg 1 q;
enq 2 q;
1 = deq g
;5 run_test "queue test 1" test

let test () : bool =
let g : int queue = create () 1in
enqg 1 q;
enqg 2 q;
let _ = deq g 1n
2 = deq ¢
;5 run_test "queue test 2" test

CIS120

What value should replace ??? so that the following test passes?

let test () : bool =
let int queue = create () in
eng
let _ = deq q in
enqg 2 q;
7277 =

= Q

;; run_test "enq after deq" test

1.1
2.2
3. None
4. failwith “empty queue”

Answer: 2
CIS120

Implementing Linked Queues

Representing links

Implement the behavior

module ListQueue : QUEUE = struct

type 'a queue = { mutable contents : ‘a list }

let create () : 'a queue =
{ contents = [] }

let i1s_empty (q:'a queue) : bool =
g.contents = []

let eng (x:'a) (g:'a queue) : unit =
g.contents <- (g.contents @ [x])
let deq (g:'a queue) : 'a =
begin match q.contents with
| [1 -> failwith "deq called on empty queue"
| x::tl -> g.contents <- tl; x

end
end Here we are using type abstraction to protect the state.

Outside of the module, no one knows that queues are

implemented with a mutable structure. So, only these
functions can modify this structure.

CIS120

A Better Implementation

* Implementationis slow because of append:
— g.contents @ [x] copies the entire list each time
— As the queue gets longer, it takes longer to add data
— Only has a single reference to the beginning of the list

* Let'sdoitagain with TWO references, oneto the beginning
(head) and one to the end (tail).

— Dequeue by updating the head reference (as before)

— Enqueue by updating the tail of the list

* Challenge:The list itself must be mutable

— because we add to one end and remove from the other

Data Structure for Mutable Queues

type 'a gnode = {

v: 'a;
mutable next : 'a gnode option

¥

type 'a queue = { mutable head : 'a gnode option;

mutable tail : 'a gnode option }

There are two parts toa mutable queue:
1. the “internal nodes” of the queue, with links from one
to the next
2. arecordwith links to the head and tail nodes

All of the links are optional so that the queue can be empty.

CIS120

Queues in the Heap

head
tail

None

None

An empty queue

/—\) Some ‘//\
head ¢ | r/r/f v} 1 |
tail Some next e None
A queue with one element
//* Some “
head o v 1 S 7
tail next |[¢« ome
Some

A queue with two elements

CIS120

hext

_/rV None

Visual Shorthand: Abbreviating Options

’ Val /-\) Some f/\
head ‘ means / Val
tail

An empty queue 1 7 None
E means
head 7{\(\ Y, 1
tail \\j(,next
A queue with one element
head \V; 1 ¢ v 2 ¢ Y, 3
tail next] next — next

A queue with three elements

CIS120

Given the queue datatype shown below, which expression creates a 1-element

gueue in the heap:

type 'a ande _ { head Vv 1
v: 'a; tail next

mutabie next : 'a gnode option
¥
type 'a queue = { mutable head : 'a gnode option;
mutable tail : 'a gnode option }

1. let q = { head = None; tail = None }

2. let q = { head = 1; tail = None }

3. let q = let gn = { v= 1; next = None } 1in
{ head = gn; tail = None }

4. let g = let gn = { v=1; next = None } 1in

{ head = Some gn; tail = Some gn }

Answer: 4

