Programming Languages
and Techniques
(C1S120)

Lecture 18
February 24th, 2016

"Objects"
GUI project overview

Announcements

e Midterm exam

— Solutions available on course website
— View exams with Ms. Caliman (Levine 309)

— If youwould like a copy of your exam, send her an email
(jackie@seas.upenn.edu) by Thursday at 9AM. She will have the copy
available for you on Friday.

* HW5: GUI & Paint

— Auvailable on the web site
— Due Thursday, March 3 at midnight

Building a GUI and GUI Applications

[NON X OCaml graphics

|O Point| |© Linel IO Ellipsel |O Textl [@Thick linesl |Undo| |Quit|

SO EE 8008] |

Text buffer:|CIS 120

Where we're going...

« HW 5:Build a GUI library and client application from scratch
in OCaml

e @Goals:

— Apply everything we've seen so far to do some pretty
serious programming

— Practice with first-class functions and hidden state
— Bridge to object-oriented programming
— lllustrate the event-driven programming model

— Give you a feel for how GUI libraries (like Java’s Swing)
work

“Objects” and Hidden State

Encapsulating State

What number is printed by this program?

type state = { mutable count : int }
let f =
let p ={ count =2 } 1in
fun (y : int) -> p.count + y
let p = { count = 3 }
;5 print_int (f 1)

]2-]2_ How did you answer this question?
3.3 1. Substitution model

4 4 2. Abstract Stack Machine

5.5 3. | just knew the answer

6. other 4. | didn’t know, so | guessed

C1S120 Answer: 3

An “incr” function

e Functionswith internal state

type counter_state = { mutable count:int }
let ctr = { count = 0 }

(* each call to incr will produce the next integer *)
let incr () : int =

ctr.count <- ctr.count + 1;

ctr.count

e Drawbacks:

— No abstraction: There is only one counter in the world. If we want
another, we need another counter_state value and another incr
function.

— No encapsulation: Any other code can modify count, too.

Using Hidden State

Make a function that creates a counter state and an incr
function each time a counteris needed.

(* More useful: a counter generator: *)
let mk_incr () : unit -> 1int =
(* this ctr 1s private to the returned function *)
let ctr = { count = 0 } 1in
fun O ->
ctr.count <- ctr.count + 1;
ctr.count

(* make one counter *)
let incrl : unit -> int = mk_incr QO

(* make another counter *)
let incrZ2 : unit -> int = mk_incr QO

What number is printed by this program?

let mk_incr () : unit -> int =
let ctr = { count = 0 } 1n
fun O ->
ctr.count <- ctr.count + 1;
ctr.count
let incrl = mk_incr () (* make one counter *)
let incr2 = mk_incr () (* and another *)
let _ = incrl () 1in print_int (incrZ2 ()
1.1
2.2
3.3
4. other

CIS120 Answer: 1

Running mk_incr

Workspace Stack Heap

let mk_incr () : unit -> 1int =
let ctr = {count = 0} 1in
fun O ->
ctr.count <- ctr.count + 1;
ctr.count

let incrl : unit -> int =
mk_incr ()

10

Running mk_incr

Workspace Stack Heap

let mk_incr : unit -> unit ->
int = fun () ->
let ctr = {count = 0} 1in
fun O ->
ctr.count <- ctr.count + 1;
ctr.count

let incrl : unit -> int =
mk_incr ()

11

Running mk_incr

Workspace Stack Heap

let mk_incr : unit -> unit ->
int = fun () ->
let ctr = {count = 0} 1in
fun () ->
ctr.count <- ctr.count + 1;
ctr.count

let incrl : unit -> int =
mk_incr ()

12

Running mk_incr

Workspace Stack Heap

. .) fun OO ->
let mk_incr : unit -> unit -> let ctr = {count = 0} in
int = fun O ->

ctr.count <- ctr.count + 1;
) ctr.count

let incrl : unit -> 1At =
mk_incr ()

13

Running mk_incr

Workspace Stack Heap
))) fun OO ->
let mk incr : unit -> unit -> }etg§r=-&munt=®}in
. _ un ->
1nt =, ctr.count <- ctr.count + 1;
| \J ctr.count
let incrl : unit -> 1Rt =
mk_incr ()

14

Running mk_incr

Workspace Stack

let incril
mk_incr ()

: unit -> int =

mk_incr 4

Heap

fun OO ->
let ctr = {count = 0} 1in
fun O ->
ctr.count <- ctr.count + 1;
ctr.count

15

Running mk_incr

Workspace Stack

let incril
mk _incr ()

: unit -> int =

mk_incr “

Heap

fun OO ->
let ctr = {count = 0} 1in
fun OO ->
ctr.count <- ctr.count + 1;
ctr.count

16

Running mk_incr

Workspace

Stack

let incrl : unit -> int =

Q-

mk_incr

Heap

fun OO ->
let ctr = {count = 0} 1in
fun O ->
ctr.count <- ctr.count + 1;
ctr.count

17

Running mk_incr

Workspace

Stack

let incrl : unit -> int =

(k

mk_incr

Heap

fun OO ->
let ctr = {count = 0} 1in
fun O ->
ctr.count <- ctr.count + 1;
ctr.count

18

Running mk_incr

Workspace Stack
.
let ctr = {count = 0} 1in miciner
fun () -> let incrl ;: unit -> int =
ctr.count <- ctr.count + 1;)
ctr.count

Heap
fun OO ->
let ctr = {count = 0} 1in
fun O ->
ctr.count <- ctr.count + 1;
ctr.count

19

Running mk_incr

Workspace Stack
e
let ctr = {count = @} 1in mk_incr
fun () -> let incrl ;: unit -> int =
ctr.count <- ctr.count + 1;)
ctr.count

Heap
fun OO ->
let ctr = {count = 0} 1in
fun O ->
ctr.count <- ctr.count + 1;
ctr.count

20

Running mk_incr

Workspace Stack ,,~_)'
let ctr==¢‘ﬁ:ri mk_incr
fun () -> let incrl ;: unit -> int =
ctr.count <- ctr.count + 1;)
ctr.count 5

Heap

fun OO ->
let ctr = {count = 0} 1in
fun O ->
ctr.count <- ctr.count + 1;
ctr.count

count || 0 I

21

Running mk_incr

Workspace
let ctr==¢‘ﬁ:’7
fun O ->
ctr.count <- ctr.count + 1;
ctr.count

Stack Heap
mk_incr fun (O ->
— let ctr = {count = 0} 1in
fun O ->
let incrl : unit -> int = ctr.count <- ctr.count + 1;
(G ctr.count
count || @I

22

Running mk_incr

Workspace

fun O ->
ctr.count <- ctr.count + 1;
ctr.count

Stack Heap
i fun OO ->
mk_mcr let ctr = {count = 0} in
fun O ->
let incrl : unit -> int = ctr.count <- ctr.count + 1;
(G ctr.count
ctr | T | T
count || @I

23

Running mk_incr

Workspace

fun O ->
ctr.count <- ctr.count + 1;

ctr.count

Stack Heap
i fun OO ->
mk_mcr let ctr = {count = 0} in
fun O ->
let incrl : unit -> int = ctr.count <- ctr.count + 1;
(G ctr.count
ctr | o1 | Thoea
count || @l

24

Local Functions

Workspace Stack Heap
i / fun OO ->
mk_mcr let ctr = {count = 0} 1in
fun OO ->
let incrl : unit -> int = ctr.count <- ctr.count + 1;
() ctr.count

ctr | o1 | o

count ||)] I

ctr

E
fun OO ->
ctr.count <- ctr.count + 1;
ctr.count

NOTE: We need one refinement of the
ASM model to handle local functions.
Why?

...SO wWe save a copy of the
needed stack bindings with
the function itself. (This is

: : emr s sometimes called a closure...)
The function mentions “ctr”, which

is on the stack (but about to be
popped off)...)5

Local Functions

Workspace Stack A Heap
i fun OO ->
mk_mcr let ctr = {count = 0} in
fun OO ->
let incrl : unit -> int = ctr.count <- ctr.count + 1;
(G ctr.count

ctr -’t/\

count || 0 l
ctr
E
fun OO ->
ctr.count <- ctr.count + 1;
ctr.count

26

Local Functions

Workspace Stack

let incrl

A\

: unit -> int =

mk_incr

AN\

Heap

fun OO ->
let ctr = {count = 0} 1in
fun O ->
ctr.count <- ctr.count + 1;
ctr.count

count || 0 l

ctr

E
fun OO ->
ctr.count <- ctr.count + 1;
ctr.count

27

Local Functions

Workspace Stack

let incrl

: unit -> int =

mk_incr

AN\

N\

Heap

fun OO ->
let ctr = {count = 0} 1in
fun O ->
ctr.count <- ctr.count + 1;
ctr.count

count || 0 l

ctr

E
fun OO ->
ctr.count <- ctr.count + 1;
ctr.count

28

Local Functions

Workspace

Stack

mk_incr ‘//\"'I
incrl :’I |

Heap
fun OO ->
let ctr = {count = 0} in
fun O ->
ctr.count <- ctr.count + 1;
ctr.count

count

ctr

fun) ->
ctr.count <- ctr.count + 1;

ctr.count

Note how the count record
is accessible only via the
1ncrl function. This is the

sense in which the state
is “local” to 1hcrl.

29

Now let’s run “incrl ()”

Workspace Stack

incrl O

mk_incr

incrl

Heap

fun OO ->
let ctr = {count = 0} 1in
fun O ->
ctr.count <- ctr.count + 1;
ctr.count

count || 0 I
ctr
E
fun OO ->
ctr.count <- ctr.count + 1;
ctr.count

30

Now let’s run “incrl ()”

Workspace Stack

incrl O

mk_incr

incrl

Heap

fun OO ->
let ctr = {count = 0} 1in
fun O ->
ctr.count <- ctr.count + 1;
ctr.count

count || 0 I
ctr
E
fun OO ->
ctr.count <- ctr.count + 1;
ctr.count

31

Now let’s run “incrl ()”

AN\

Workspace Stack
mk_incr
(\O) incrl

A

~_U

Heap
fun OO ->
let ctr = {count = 0} 1in
fun O ->
ctr.count <- ctr.count + 1;
ctr.count
count || @l
ctr
E
fun OO ->
ctr.count <- ctr.count + 1;
ctr.count

32

Now let’s run “incrl ()”

Workspace Stack

~

mk_incr

AN\

incrl

A

~_U

Heap

fun OO ->
let ctr = {count = 0} 1in
fun O ->
ctr.count <- ctr.count + 1;
ctr.count

count || 0 l
ctr
E
fun OO ->
ctr.count <- ctr.count + 1;
ctr.count

33

Now let’s run “incrl ()”

Workspace Stack Heap
mk_incr | ¢ fun OO -> _
ctr.count <- ctr.count + 1; - Tlcet E‘;r‘ = {count = 0} in
un ->
ctr.count incrl /q ctr.count <- ctr.count + 1;
ctr.count

(@)

count ||)] l

ctr

ctr

ol
V Fn O ->
ctr.count <- ctr.count + 1;

ctr.count

NOTE: Since the function had
some saved stack bindings,
we add them to the stack

at the same time that we put
the code in the workspace.

34

Now let’s run “incrl ()”

Workspace Stack A Heap
mk_incr fun O -> _
ctr.count <- ctr.count + 1; -]lcet E‘;r‘ = {count = 0} in
un ->
ctr.count incrl /q ctr.count <- ctr.count + 1;
ctr.count
)

ctr

E
V Fn O ->
ctr.count <- ctr.count + 1;

ctr.count

35

Now let’s run “incrl ()”

Workspace el
.count <- ctr.count + 1; mk_incr
ctrcount -

(@)

Heap
fun OO ->
let ctr = {count = 0} 1in
fun O ->
ctr.count <- ctr.count + 1;
ctr.count

/ count || 0 l

ctr

E
fun OO ->
ctr.count <- ctr.count + 1;
ctr.count

36

Now let’s run “incrl ()”

Workspace el
.count <- ctr.count + 1; mk_incr
ctrxgount -

(@)

Heap
fun OO ->
let ctr = {count = 0} 1in
fun O ->
ctr.count <- ctr.count + 1;
ctr.count

/ count || 0 l

ctr

E
fun OO ->
ctr.count <- ctr.count + 1;
ctr.count

37

Now let’s run “incrl ()”

Workspace el
.count <- .count + 1; mk_incr
ctrcount -

(@)

Heap
fun OO ->
let ctr = {count = 0} 1in
fun O ->
ctr.count <- ctr.count + 1;
ctr.count
count || @l
ctr
E
fun OO ->
ctr.count <- ctr.count + 1;
ctr.count

38

Now let’s run “incrl ()”

Workspace el
.count <- _a_.count + 1; mk_incr
ctrcount -

(@)

Heap
fun OO ->
let ctr = {count = 0} 1in
fun O ->
ctr.count <- ctr.count + 1;
ctr.count
count || @l
ctr
E
fun OO ->
ctr.count <- ctr.count + 1;
ctr.count

39

Now let’s run “incrl ()”

.count <- 0 + 1;
ctre

ount

Workspace Stack A Heap
i fun OO ->
mk_mcr let ctr = {count = 0} in
fun O ->
incrl | o] ctr.count <- ctr.count + 1;
ctr.count

(@)

/ count || 0 l

ctr

ctr.count

E
&//)’ Fn O ->
ctr.count <- ctr.count + 1;

40

Now let’s run “incrl ()”

.count <- @ + 1;
ctre

ount

Workspace Stack A Heap
i fun OO ->
mk_mcr let ctr = {count = 0} in
fun O ->
incrl | o] ctr.count <- ctr.count + 1;
ctr.count

(@)

/ count || 0 l

ctr

ctr.count

E
&//)’ Fn O ->
ctr.count <- ctr.count + 1;

41

Now let’s run “incrl ()”

ctre

Workspace Stack A Heap
i fun OO ->
.count <- 1; mk—mcr let ctr = {count = 0} 1in
fun O ->
b incrl /q ctr.count <- ctr.count + 1;
ctr.count

(@)

/ count || 0 l

ctr

E
V Fn O ->
ctr.count <- ctr.count + 1;

ctr.count

42

Now let’s run “incrl ()”

Workspace Stack A Heap
i fun OO ->
e .count <- 1; mk—mcr let ctr = {count = 0} in
fun O ->
ctr incrl /q ctr.count <- ctr.count + 1;
ctr.count

(@)

/ count || 0 l

ctr

E
V Fn O ->
ctr.count <- ctr.count + 1;

ctr.count

43

Now let’s run “incrl ()”

Workspace Stack /\) Heap
i fun OO ->
(); mk_mcr let ctr = {count = 0} in
fun O ->
ctr.count incrl /q ctr.count <- ctr.count + 1;
ctr.count
)
coun
ctr | o
ctr

E
L/‘ Fn O ->
ctr.count <- ctr.count + 1;

ctr.count

44

Now let’s run “incrl ()”

Workspace Stack /\) Heap
i fun OO ->
Qs mk_incr let ctr = {count = 0} in
fun O ->
ctr.count incrl /q ctr.count <- ctr.count + 1;
ctr.count
)
count || 1 l
ctr | o
ctr

E
L/‘ Fn O ->
ctr.count <- ctr.count + 1;

ctr.count

45

Now let’s run “incrl ()”

Workspace Stack A Heap
i fun OO ->
ctr.count mk_incr let ctr = {count = 0} in
fun O ->
incrl | o« ctr.count <- ctr.count + 1;
ctr.count
)
count || 1 l
ctr | o
ctr

E
L/‘ Fn O ->
ctr.count <- ctr.count + 1;

ctr.count

46

Now let’s run “incrl ()”

Workspace Stack A Heap
i fun OO ->
ctr.count mk_incr let ctr = {count = 0} in
fun O ->
incrl | o« ctr.count <- ctr.count + 1;
ctr.count
)
count || 1 l
ctr | o
ctr

E
L/‘ Fn O ->
ctr.count <- ctr.count + 1;

ctr.count

47

Now let’s run “incrl ()”

AN\

Workspace Stack
count mk_incr
\ incrl /q
)
ctr | o

/L/T

Heap
fun OO ->
let ctr = {count = 0} 1in
fun O ->
ctr.count <- ctr.count + 1;
ctr.count
count " 1 l
ctr
E
fun OO ->
ctr.count <- ctr.count + 1;
ctr.count

48

Now let’s run “incrl ()”

AN\

Workspace Stack
e .count mk_incr
incrl /q
)
ctr | o

/L/T

Heap
fun OO ->
let ctr = {count = 0} 1in
fun O ->
ctr.count <- ctr.count + 1;
ctr.count
count " 1 l
ctr
E
fun OO ->
ctr.count <- ctr.count + 1;
ctr.count

49

Now let’s run “incrl ()”

Workspace Stack A Heap
i fun OO ->
mk_mcr let ctr = {count = 0} in
fun O ->
incrl | o] ctr.count <- ctr.count + 1;
ctr.count
C
count || 1 l
ctr | o
ctr

ctr.count

E
V Fn O ->
ctr.count <- ctr.count + 1;

50

Now let’s run “incrl ()”

Workspace Stack A Heap
i fun OO ->
mk_mcr let ctr = {count = 0} in
fun O ->
incrl | o« ctr.count <- ctr.count + 1;
ctr.count
O C
count || 1 I

O ctr | o

ctr

ctr.count

E
V e ->
ctr.count <- ctr.count + 1;

51

Now let’s run “incrl ()”

Workspace Stack Heap

mk_|ncr //\!/' fun () -> .
__I let ctr = {count = 0} 1in

' fun OO ->
incrl ctr.count <- ctr.count + 1;
ctr.count

count

fun) ->
ctr.count <- ctr.count + 1;
ctr.count

52

Now Let’s run mk_1ncr again

Workspace Sl
let incr2 : unit -> int = mk_incr
mk_incr -

2

1

Heap
fun OO ->
let ctr = {count = 0} 1in
fun O ->
ctr.count <- ctr.count + 1;
ctr.count
count " 1 l
ctr
E
fun OO ->
ctr.count <- ctr.count + 1;
ctr.count

53

After creating incr2

Workspace Stack Heap
i fun OO ->
n1k_Jncr let ctr = {count = 0} in
fun OO ->
incrl / ctr.count <- ctr.count + 1;
ctr.count
incr2
count " 1 I
ctr
E
V e ->
ctr.count <- ctr.count + 1;
ctr.count

NOTE: the two different incr functions

have separate local states because a count 0 I
new count record was created in W—— ;

each call to mk_incr. b

ctr

E
fun OO ->
ctr.count <- ctr.count + 1;
ctr.count

55

One step further

mk_incr shows us how to create different instance of local
state so that we can have several different counters.

What if we want to bundle together several operations that

share the same local state?
— e.g. incr and decr operations that work on the same counter

A Counter Object

(* The type of counter objects *)
type counter = {

get : unit -> 1int;
incr : unit -> unit;
decr : unit -> unit;

reset : unit -> unit;

¥

(* Create a fresh counter object with hidden state:
let new_counter () : counter =
let ctr = {count = 0} 1in

{

get = (fun (O -> ctr.count) ;

incr = (fun () -> ctr.count <- ctr.count + 1) ;
decr = (fun () -> ctr.count <- ctr.count - 1) ;
reset = (fun () -> ctr.count <- 0) ;

}

*)

57

let cl1 = new_counter ()

Stack Heap

/\/ fun () ->

new counter .
— let ctr = {count = 0} 1in

{.1

cl ”'—\
e

E
get ’—P’(fun () -> ctr.count
incr .\I
decr | « ctr ’+'r
fun () ->
reset ctr.count <- ctr.count + 1

ar o dm

E
fun () ->
ctr.count <- ctr.count - 1

ctro—}

E
fun () ->
ctr.count <- @

58

Using Counter Objects

(* a helper function to create a nice string for
printing *)
let ctr_string (s:string) (1:int) =
s A".ctr = " A (string_of_int 1) A "\n"

let cl
let cZ

new_counter ()
new_counter ()

;5 print_string (ctr_string "cl1" (cl.get ()))
;5 cl.incr O
;5 cl.incr QO
;5 print_string (ctr_string "cl1" (cl.get ()))
;; cl.decr (O
;5 print_string (ctr_string "cl1" (cl.get ()))
;5 c2.incr ()
;5 print_string (ctr_string "c2" (c2.get ()))
;5 c2.decr (O
;5 print_string (ctr_string "c2" (c2.get ()))

59

putting objects to work

Have you ever used a GUI library (such as Java’s Swing) to
construct a user interface?

1. Yes
2. No

Step #1: Understand the Problem

We don’t want to build just one graphical application: we
want to make sure that our code is reusable.

What are the conceptsinvolvedin GUI libraries and how do
they relate to each other?

How can we separate the various concerns on the project?

Designing a GUI library — Starting point

 OCaml’s Graphics library provides very simple primitives for:
— Creating a window
— Drawing various shapes: points, lines, text, rectangles, circles, etc.

— Getting the mouse position, whether the mouse button is pressed,
what key is pressed, etc.

— See: http://caml.inria.fr/pub/docs/manual-ocaml/libref/Graphics.html

* How dowe go from that to a functioning, reusable GUI
library?

Step 2, Interfaces: Project Architecture®

*Note: Subsequent program snippets are color-coded according to this diagram.

Application \

Paint
GUI Eventloop Widget
Library
Gcetx

1

Native
graphics
library

OCaml’s Graphics Module (graphics.cma)

Goal of the GUI library: provide a consistent layer of abstraction between the
application (Paint) and the Graphics module.

64

Step 2, Interfaces: Project Architecture®

*Note: Subsequent program snippets are color-coded according to this diagram.

Application
\ Paint ;

’ Eventloop Widget
Gctx

OCaml’s Graphics Module (graphics.cma)

Native

. -
graphics
library

—

Goal of the GUI library: provide a consistent layer of abstraction between the
application (Paint) and the Graphics module.

65

GUI terminology — Widget*

* Basic element of GUIs : buttons, checkboxes, windows,
textboxes, canvases, scrollbars, labels

* All have a position onthe screen and know how to display
themselves

 May be composed of other widgets (for layout)

 Widgets are often modeled by objects

— They often have hidden state (string on the button, whether the
checkbox is checked)

— They need functions that can modify that state

*Each GUI library uses its own naming convention for what we call “Widget”. Java’s Swing calls
them “Components”; iOS UIKit calls them “UlViews”; WINAPI, GTK+, X11’s widgets, etc....

GUI terminology - Eventloop

* Main loopof any GUI application

let run (w:widget) : unit =
Graphics.open_graph ""; (* open a new window *)
Graphics.auto_synchronize false;

let rec loop () : unit =
Graphics.clear_graph ();

repaint w;

Graphics.synchronize (); (* force window update *)

wait for user input (mouse movement, key press)
inform w about the i1input so widgets can react to it;

loop () (* tail recursion! *)
1n
Lloop O

 Takes “top-level” widget w as argument. That widget contains all others in the
application.

67

