Programming Languages
and Techniques
(C1S120)

Lecture 20
February 29", 2016

GUI library: events

How far are you on HW 57?

Haven't started yet

Working on Tasks 1-4 (layout, drawing)
Working on Checkboxes

Working on Something Cool

I’'m done!

-

CIS120

Events and Event Handling

Project Architecture

GUI Eventloop Widget
Library
Gcetx
Native OCaml’s Graphics Module (graphics.cma)
graphics
library

Goal of the GUI library: provide a consistent layer of abstraction between the
application (Paint) and the Graphics module.

Reacting to events

lightbulb demo

%\ OCaml graphics

N JouIt

\ Clicking here

makes the “lightbulb” turn on
and changes label text

%\ OCaml graphics

|DFF IUU I TI

_

Clicking again
makes it turn back off

lightbulb demo

%\ OCaml graphics

N fourt
What code from the (simple) widget library

defines the layout of this application?

1. Idon't know how to start

2. I may haveit, but I'm not sure

3. I'msurel've got it

type widget = {
repaint : Gctx.gctx -> unit;
size : unit -> (int * 1int)

3

val label : string -> widget

val space : int * int -> widget

val border : widget -> widget

val hpair : widget -> widget -> widget

val canvas : int * int -> (Gectx.gctx -> unit) -> widget

lightbulb demo

space label, with border

O O X\ OCaml graphics
oN” Jaurt
\ Clicking here

makes the “lightbulb” turn on
and changes label text

canvas,
with border

® 00 X\ OCaml graphics

|DFF IQU I TI

_

Clicking again
makes it turn back off

User Interactions

* Problem: When a user moves the mouse, clicks the button, or
presses a key, the application should react. How?

swdemo.ml
let run (w:widget) : unit =
Gctx.open_graphics (); (* open graphics window *)
let g = Gectx.top_level 1in
w.repaint g; (* repaint the widget once *)
Graphics.synchronize (; (* force window update *)

ignore (Graphics.read_key ()) (* wait for a keypress *)

GUI terminology - Eventloop

let run (w:widget) : unit =
Gctx.open_graphics ();
let g = Gectx.top_level 1in

let rec loop () : unit =
Graphics.clear_graph Q);

Graphics.synchronize (); (* force window update *)

wait for user input (mouse movement, key press)
inform w about the input so widgets can react to 1it;

loop () (* tail recursion! *)
1n
loop ()

11

Solution: The Event Loop

eventloop.ml

let run (w:Widget.t) : unit =
Gctx.open_graphics ();
let g = Gectx.top_level 1in

let rec loop) =
Graphics.clear_graph (O;
w.repaint g;
Graphics.synchronize ();

Events

gext.mli

type event

val wait_for_event : unit -> event

type event_type

KeyPress of char (* User pressed a key

|

| MouseDown
| MouseUp

| MouseMove
| MouseDrag

val event_type
val event_pos

(* Mouse Button pressed, no movement
(* Mouse button released, no movement
(* Mouse moved with button up

(* Mouse moved with button down

. event -> event_type
: event -> gctx -> position

*)
*)
*)
*)
*)

The graphics context translates the location
of the event to widget-local coordinates

Reactive Widgets

widget.mli
type t = {
repaint : Gctx.gctx -> unit;
size . unit -> Gctx.dimension;

handle : Gctx.gctx -> Getx.event -> unit (¥ NEW! *)
h

 Widgets have a “method” for handling events
* The eventloop waits for an event and then gives it to the root widget

 The widgets forward the event down the tree, according to the
position of the event

Event-handling: Containers

Container widgets propagate events to their children: User clicks,
generating
) event e
bofer handle ge /
=
hpé’g .handle gl e Hello V"Id
border hpair T™~handle g2 e
label space borden | .handle g3 e
label || .handle g4 e

Widget tree

On the screen

Routing events through container
widgets

Event Handling: Routing

* When a container widget handles an event, it passes the event to the
appropriate child

* The Gctx.gctx must be translated so that the child can interpret the event
in its own local coordinates.

widget.ml

let border (w:widget):widget =
{ repaint = ..;
size = ..;
handle = (fun (g:Gctx.gctx) (e:Gectx.event) ->
w.handle (Gctx.translate g (2,2)) e);

Consider routing an event through an hpair widget
constructed by:

let hp = hpair wl w2

The event will always be propagated either to w1 or w2.

1. True
2. False

Dropping Events in an HPair

Route to Route to

h’s
we / height

v

Drop this M

event _
U

h’s width

 There are three cases for routing in an hpair.

 An event in the “empty area” should not be sent to either w1l
or w2.

Routing events through hpair widgets

 The event handler of an hpair must check to see whether the event should
be handled by the left or right widget.

— Check the event’s coordinates against the size of the left widget
— If the event is within the left widget, let it handle the event
— Otherwise check the event’s coordinates against the right child’s

— If the right child gets the event, don’t forget to translate its coordinates

handle =
(fun (g:Gctx.gctx) (e:Getx.event) ->
if event_within g e (wl.size g)
then wl.handle g e
else
let g = (Getx.translate g (fst (wl.size g), 9)) 1in
if event_within g e (W2.size g)
then w2.handle g e

else Q)

How can widgets react to events?

A stateful Label Widget

let label (s: string) : widget =
let r = { contents = s } 1in
{ repaint =
(fun (g: Gctx.gctx) ->
Gctx.draw_string g (0,0) r.contents);
handle = (fun _ _ -> ();
size = (fun O ->

Gctx.text_size r.contents)

The label “object” can make its string mutable. The “methods” can
encapsulate that string.

But what if the application wants to change this string in response to an
event?

A stateful Label Widget

widget.ml

type label_controller = { set_label: string -> unit }

let label (s: string) : widget * label_controller =
let r = { contents = s } 1n

({ repaint
g gctx
draw_string g r.contents
handle o
size
text_size r.contents
b

{ set_label = fun (s: string) -> r.contents <- s })

A controller gives access to the shared state.
— e.g. the label_controller object provides a way to set the label

Changingthe label on a buttonclick

CIS120

When a widget's handle function receives an
event, it should also call functions from the

Gcetx library to update the view of the
widget.

1. True
2. False
3. Notsure

How to react to eventsina modular way?

Event Listeners

Widgets may want to react to many different sorts of events

Example: Button
— button click: changes the state of the paint program and button label
— mouse movement: tooltip? highlight?

— key press: provide keyboard access to the button functionality?

These reactions should be independent

— Each sort of event handled by a different event listener
(i.e. a first-class function)

— Reactive widgets may have several listeners to handle a triggered event
— Listeners react in sequence, all have a chance to see the event

A notifier is a container widget that adds event listeners to a node in the
widget hierarchy

Note: this way of structuring event listeners is based on Java’s Swing
Library design (we use Swing terminology).

Listeners

widget.ml

type event_listener = Gctx.gctx -> Gectx.event -> unit

(* Performs an action upon receiving a mouse click. *)
let mouseclick_listener (action: unit -> unit)
. event_listener =
fun (g:Gctx.gctx) (e: Gectx.event) ->
1f Gctx.event_type e = Gctx.MouseDown
then action ()

Notifiers

* A notifieris a container widgetthat adds event listenersto a
nodein the widget hierarchy.

 The event listeners “eavesdrop” on the events flowing through the
node

— The event listeners are stored in a list

— They react in order, if one of them handles the event the later ones do
not hear it

— If none of the listeners handle the event, then the event continues to
the child widget

* List of event listeners can be updated by using a notifier_controller

Notifiers and Notifier Controllers

widget.ml

type hotifier_controller =
{ add_listener : event_listener -> unit }

let notifier (w: widget) : widget * notifier_controller =
let listeners = { contents = [] } in
{ repaint = w.repaint;
handle =

(fun (g: Gectx.gctx) (e: Getx.event) ->
List.i1ter (fun h -> h g e) listeners.contents;

w.handle g e);

size = W.Slze Loop through the list
I of listeners, allowing
1 add_event_listener = each one to process
fun (newl: event_listener) -> the event. Then pass
LLEEEner s ConiEimes < the event to the child.
newl :: listeners.contents

The notifier_controller allows
new listeners to be added to
the list.

Listeners and Notifiers Pictorially

hpé’g
b

order hpair
)
label space borde
; N TN TN
notifie 4 11 ::12 :: |3§: (]

Widget tree

User clicks,

generating
event e

Hello V'Kld

listeners

label

On the screen

Buttons (at last!)

widget.ml

(* A text button *)
let button (s: string) : widget
* label_controller
* notifier_controller =

let (w, 1c) = label s in
let (W', nc) = notifier w in
(w', 1lc, nc)

A buttonwidgetisjust a label wrapped in a notifier

 Add a mouseclick_listenerto the buttonusingthe
notifier_controller

* (Foraestheticpurposes,youcan but a borderaround the
button widget.)

