Programming Languages
and Techniques
(C1S120)

Lecture 22
March 14t 2016

Object Oriented Programming in Java

Announcements

* Java Bootcamp tonight
— Monday, March 14 from 6-8pm in Levine 101 (Wu & Chen)

e Midterm?2
— March 22M 6:15-8:15PM, location TBA
— Make-up exam, Wed March 2379, 9-11AM

— Sign up for make-up exam on course website by March 20th

* HWS5: Java Programming
— Will be available soon
— Due: Tuesday, March 29th at 11:59pm (after the exam)

Midterm 2

Focus of exam: Programmingin OCaml with higher-order
functions and mutable state

Homeworks 4 (queues) and 5 (GUI)

Through Wednesday's lecture

everything from first exam (1-10)

mutable & immutable records (11-13)

ASM (14)

options (15), queues, deques and tail recursion (16)

object encoding, local state (17) and reactive programming (18)
comparisons between OCaml and Java (19 & 20)

Practice exams on website

Old exams were held later in the course (after HW 6)

Not covered this time: writing Java code, Java arrays, Java subtyping
and dynamic dispatch, Java ASM

Object-Oriented Programming
In Java

OO terminology

Object: a structured collection of fields (aka local
state or instance variables) and methods

Class: a template for creating objects

The class of an object specifies...

— the types and initial values of its local state (fields)

— the set of operations that can be performed on the object
(methods)

— onhe or more constructors: code that is executed when the
objectis created (optional)

Every (Java) object is an instance of some class

"Objects" in

OCaml|

(* The type of counter objects *)
type counter = {

inc : unit -> 1int;

dec : unit -> 1int;

}

(* Create a counter “object” *)
let new_counter () : counter =
let r = {contents = 0} in
{
inc = (fun O ->
r.contents <- r.contents + 1;
r.contents);
dec = (fun O ->
r.contents <- r.contents - 1;
r.contents)

CIS120

Why is this an object?

" FEncapsulated local state
only visible to the methods
of the object

= QObiject is defined by what it
can do—local state does not
appear in the interface

= There is a way to construct
new object values that
behave similarly

Objects in Java

public class Counter {

class declaration

class name /

private int r; instance variable
puinCQCounter O 1 constructor
r = 0;
¥
a— . object creation and use
public int inc Q) { methods y//
r=r + 1;
g return r; public class Main {
. public static void
public int dec O { main (String[] args) { constructor
r=r - 1; invocation
. return r; Counter c¢ = new Counter();

}

System.out.printin(c.inc());

CIS120

} method call

Encapsulating local state

public class Counter { _— ris private

}

i~

public Counter () { constructor and
r=0; methods can

1 refertor

private int r;

public int inc () {

r=r + 1;
return r; public class Main { other parts of the
¥ program can only access
. public static void Public members
pulkjllcrlnthec O 1 main (String[] args) {
return r; Counter c¢ = new Counter();

¥
System.out.printin(c.inc());

} method call

CIS120 8

Encapsulating local state

* Visibility modifiers make the state local by
controlling access

* Basically:
— public : accessible from anywhere in the program
— private : only accessible inside the class

* Design pattern — first cut:
— Make all fields private

— Make constructors and non-helper methods public

(There are a couple of other protection levels — protected and
“package protected”. The details are not important at this point.)

What is the value of ans at the end of this program?

Counter x = new Counter();
x.1nc();
int ans = x.inc(Q);

1. 1
2. 2
3. 3
4. NullPointerException

Answer: 2

public class Counter {
private int r;

public Counter () {
r=0;

h

public int inc O {
r=r + 1;
return r;

h

What is the value of ans at the end of this program?

3 50 DY

Counter x;
x.1ncQ); .
int ans = x.incQ);

ZWNI—‘

ullPointerException

Answer: NPE

public class Counter {
private int r;

public Counter () {
r=0;
}

public int inc O {
r=r +1;
return r;

h

What is the value of ans at the end of this program?

Counter x = new Counter();
éébﬂiga’y - x; public class Counter {
y.incQ; : .
int ans = x.incQ); private 1int r;
1. 1 public Counter () {
2. 2 r=0;
3. 3 }
4. NullPointerException public int inc O {
r=r +1;
return r;
¥
¥

Answer: 3

OO comparison

OCaml Java (and C, C++, C#)

* Explicitly create objects * Primitive notion of object
using a record of higher creation (classes, with
order functions and hidden fields, methods and
state constructors)

* Flexibility through e Flexibility through
composition: objects can extension:
onlyimplement one Subtyping allows objects to
interface implement multiple

(i.e. button= widget * interfaces
label_controller * (i.e. button <: widget)

notifier_controller).

Working with objects abstractly

“Objects” in OCaml vs. Java

(* The type of point “objects” *) public class Point {
type point = {
getX : unit -> int; private int x;
getY : unit -> int; private int y;
move : int*int -> unit;
} public Point () {
X = 0;
(* Create an "object" with y = 0;
hidden state: *) }
type position = public int getX () {
{ mutable x: int; return x;
mutable y: int; } }
public int getY O {
let new_point () : point = return y;
let r = {x = 0; y=0} in { }
getX = (fun () -> r.x); public void move
getY = (fun) -> r.y); (int dx, int dy) {
move = (fun (dx,dy) -> X = X + dx;
r.x <- r.x + dx; X = X + dx;
r.y <- r.y + dy) }
¥

Type is separate Class specifies both type and

from the implementation implementation of object values

Interfaces

* Give a type for an object based on what it does, not
on how it was constructed

Describes a contract that objects must satisfy

Example: Interface for objects that have a position
and can be moved

public interface Displaceable {
public 1nt getX();
public 1nt getY();
public void move(int dx, int dy);
h

No fields, no constructors, no

method bodies!

Implementing the interface

 Aclassthat implementsan interface provides appropriate
definitions for the methods specified in the interface

* Thatclass fulfills the contract implicitin the interface

methods
required to
satisfy contract

—~——

public class Point 1implements Displaceable {

private int x, y; &\\
public Point(int x0, int y0@) {
X = X@; interfaces
y = y@; implemented
¥

public int getX() { return x; }
public int getY() { return y; }
public void move(int dx, int dy) {
X = X + dx;
L Yy =Y+ dy;

¥
¥

Another implementation

public class Circle i1mplements Displaceable {

h

private Point center;
private int radius;

public Circle(Point initCenter, int initRadius) {

center = initCenter;
radius = i1nitRadius;

}

public 1nt getX() { return center.getX(); }
public 1nt getY() { return center.getY(); }
public void move(int dx, int dy) {

center.move(dx, dy);

! Objects with different

local state can satisfy
the same interface

Delegation: move the
circle by movingthe
center

Another implementation

class ColoredPoint implements Displaceable {
private Point p;
private Color c;
ColoredPoint (1nt X0, 1nt y@, Color c@) {
p = new Point(x0, y@),
c = C0O;

public void move(int dx, int dy) {
p.move(dx, dy);

public int getX() { return p.getX(); }
public int getY() { return p.getY(); }

public Color getColor() { return c; }|Flexibility: Classes

may contain more
methods than

interface requires

Interfaces are types

* Can declare variables of interface type

void m(Displaceable d) { .. }

* Can call method with any Displaceable argument...

obj.m(new Point(3,4));
obj.m(new ColoredPoint(1,2,Color.Black));

* ...butm canonly operate on d according to the
interface

d.move(-1,1);

.. d.getx() . - 0.0

. d.getY() .. = 3.0

.. d.getColor() .. Doesn't type check
~ N IN/STNAANNINNY

Using interface types

* Interface variables can refer (during execution) to objects of
any class implementing the interface

* Point, Circle, and ColoredPointare all subtypes of Displaceable

Displaceable do, dl1, dZ2;
d® = new P01nt(1 2),

dl = new Circle(new Point(2,3), 1);
d2 = new ColoredPoint(-1,1, red);
d@d.move(-2,0);

dl.move(-2,0); Class that created the
dZ2 .move(-2 , 7)) > object value determines
what move function is
.. do.getXxO .. = -1.0 called.

.. dl.getX(Q) .. = 0.0

. d2.getXQ) .. = -3.0

Abstraction

 The interface gives us a single name for all the possible kinds
of “moveable things.” This allows us to write code that

manipulates arbitrary Displaceable objects, without caring
whether it’s dealing with points or circles.

class DoStuff {
public void moveltALot (Displaceable s) {
s.move(3,3);
s.move(100,1000);
s.move(1000,234651);
3

public void dostuff (O {
Displaceable sl = new Point(5,5);

Displaceable s2 = new Circle(new Point(0,0),100);
moveltALot(sl);

moveltALot(s2);
¥

¥

Multiple interfaces

* An interface represents a point of view

...but there can be multiple valid points of view

 Example: Geometric objects
— All can move (all are Displaceable)
— Some have Color (are Colored)

Colored interface

* Contract for objects that that have a color
— Circles and Points don’timplement Colored
— ColoredPointsdo

public interface Colored {
public Color getColor();
3

ColoredPoints

public class ColoredPoint
implements Displaceable, Colored {

Point center;
private Color color;
public Color getColor() {

return color;

}

Recap

Object: A collection of related fields (or instance variables)

Class: A template for creating objects, specifying
— types and initial values of fields
— code for methods

— optionally, a constructor that is run each time a new object is created
from the class

Interface: A “signature” for objects, describing a collection of

methods that must be provided by classes that implement the
interface

Object Type: Either a class or an interface (meaning “this
object was created from a class that implements this
interface”)

differences between OCaml and Java

Expressions vs. Statements

e OCamlis an expression language
— Every program phrase is an expression (and returns a value)

— The special value () of type unitis used as the result of expressions
that are evaluated only for their side effects

— Semicolon is an operator that combines two expressions (where the
left-hand one returns type unit)

* Javais a statement language

— Two-sorts of program phrases: expressions (which compute values)
and statements (which don’t)

— Statements are terminated by semicolons
— Any expression can be used as a statement (but not vice-versa)

Types

 Asin OCaml, every Java expression has a type

* Thetypedescribesthe value that an expression computes

Expression form

Example Type

Variable reference

Object creation

Method call

Equality test

Assignment

X

Declared type of variable

new Counter () Class of the object

c.inc()

X==Yy
Xx=5

Return type of method

boolean

don’t use as an expression!!

Type System Organization

OCaml

Java

primitive types
(values stored
“directly” in the
stack)

structured types
(a.k.a. reference
types — values
stored in the heap)

generics

abstract types

int, float, char, bool, ...

tuples, datatypes, records,
functions, arrays

(objects encoded as records
of functions)

‘a list

module types (signatures)

int, float, double, char, boolean,

objects, arrays

(records, tuples, datatypes,
strings, first-class functions are a
special case of objects)

List<A>

interfaces
public/private modifiers

Arithmetic & Logical Operators

equality test
inequality
comparisons

additiof{ (and string concatenation)

subtraction (anQ urre

multiplication

division

remainder (modulus)

logical “not”

logical “and” (short-circuiting)

logical “or” (short-circuiting)

New: Operator Overloading

* The meaningof an operatoris determined by the types of
the valuesit operates on
— Integer division
4/3 =1
— Floating point division
4.0/3.0 = 1.3333333333333333

— Automatic conversion
4/3.0 = 1.3333333333333333

* Overloadingis a general mechanismin Java

— we’ll see more of it later

Equality

like OCaml, Java has two ways of testing reference types for
equality:

— “pointer equality”

every object provides an “equals”
0l == 02 method that “does the right thing”

— “deep equality/ depending on the class of the
object

ol.equals(o2)

Normally, you should use == to compare primitive types and
“.equals” to compare objects

Strings

String isa built in Java class
Strings are sequences of characters

"t "Java” "3 Stooges" "EXLU"
+ means String concatenation (overloaded)
"3" + " " + "Stooges"= "3 Stooges”

Text in a String is immutable (like OCaml)
— but variables that store strings are not

— String x = "0Caml";

— String y = Xx;

— Can't do anything to X so thaty changes

The .equals method returnstrue when two strings
contain the same sequence of characters

What is the value of ans at the end of this program?

String x = "CIS 120";
String z = "CIS 120";
boolean ans = x.equals(z);

1. true
2. false
3. NullPointerException

Answer: true
This is the preferred method of comparing strings.

What is the value of ans at the end of this program?

String x1 = "CIS ";
String x2 = "120";
String x = x1 + x2;
String z = "CIS 120";
boolean ans = (X = z);

1. true
2. false
3. NullPointerException

Answer: false
Even though x and z both contain the characters “CIS 1207,
they are stored in two different locations in the heap.

