Programming Languages
and Techniques
(C1S120)

Lecture 25
March 21, 2016

Subtyping
Chapter 23

public interface Displaceable {

public 1interface Area {

int getX(Q);

public double getArea(); int getY(Q);

h

void move(int dx, int dy);

}

public

public

public

public

public
¥

public class Circle
private int x, vy,

Circle(int
int getX()
int getY()

void move(int dx, int dy) { ..}
double getArea() { return Math.pi * r * r; }

implements Displaceable, Area {
rs

r, int x0, int yo,) { ..}

{ return x; }

{ return y; }

What line has a type error in the program below (if any)?

Displaceable circle = new Circle(@, 0, 3);
int x = circle.getX();

circle.move(2,3);

double size = circle.getArea();

o HWN R

. hone of the above

Answer: 4

Announcements

* Midterm 2, tomorrow night!

* Focusof exam: Higher-order programmingin OCaml with
mutable state (Lecture notes Chapters 11-20).

Types and Subtyping

Why Static Types?

Types stop you from using values incorrectly

- 3.mQ)
—1f (3) { return 1; } else { return 2; }

— 3 + true
— (new Counter()).m()

All expressions have types

-3 +4 has type 1nt
— “A” . toLowerCase() has type String
— new ResArray() has type ResArray

How do we know if x.m() is correct? or x+37?
— depends on the type of X
— variable declarations specify types of variables
Type restrictions preserve the types of variables
— assignment "x = v" must be to values with compatible types
— methods "0.m(3)" must be called with compatible argument types

HOWEVER: in Java, values can have multiple types....

Subtyping

Definition:
Type A can be a subtype of type B if A offers
the same public methods that B does.

* TypeBiscalled the supertype of A.
* Intuitively:an A object can do anythingthat a B object can

* Note: Amay provide more public methods

Explicit Subytping

Java requires subtypesto be declared explicitly via keywords
1mplements and extends

— there is no subtyping by "coincidence" (i.e. just because the public
method names happen to be the same)

Example: A class that implements an interfaceis a subtype of
the interface:

interface Displaceable { .. }

public class ColorPoint implements Displaceable {

}

Subtyping and Variables

A avariable declared with type A can store any object thatis
a subtype of A

Area a = new Circle(l, 2, 3);

N

supertype of Circle subtype of Area

 Methodswith parameters of type A must be called with
arguments that are subtypes of A

static double m (Area x) {
return x.getArea() * 2;
3

é:ﬁ(new Circle(l, 2, 3));

Subtypes and Supertypes

* Aninterfacerepresentsapoint of view about an object

* Classes can implement multiple interfaces

interfaces

Displaceable Area supertypes
classes implement
interfaces
Point Circle Rectangle subtypes

classes

Types can have many different supertypes / subtypes

"Static" types vs. "Dynamic" classes

The static type of an expression is a type that describes what
we (and the compiler) know about the expression at compile-
time (without thinking about the execution of the program)

Displaceable x;

The dynamic class of an object is the class that it was
constructed from at run time

X = new Point(1l,2) Point
=

X 1

y 2

In OCaml, we only had static types

In Java, we also have dynamic classes

— The dynamic class will always be a subtype of its static type
— The dynamic class determines what method executes at runtime

Static type vs. Dynamic class quiz

public Area asArea (Area s) {
return s;
hy

Rectangle r =
new Rectangle (1,2,1,1);
Circle ¢ = new Circle (1,1,3);

Area s1 =r; // A
Area s2 = c; // B

S2 =r; // C
__D__ x = asArea (r);
__E__ y = asArea (sl);
sl = c; // F

sl =s2; // G

r=c; // H

r=s1;, //1

What is the static type of s1 on
line A?

. Rectangle
. Circle
. Area
none of the above

> WNBR

Static type vs. Dynamic class quiz

public Area asArea (Area s) {
return s;
hy

Rectangle r =

new Rectangle (1,2,1,1);
Circle ¢ = new Circle (1,1,3);
Area s1 =r; // A
Area s2 = c; // B
S2 =r; // C

D__ x = asArea (r);
__E__ y = asArea (sl1);

sl = c; // F
sl =s2; // G
r=c; // H
r = sl; // 1

What is the dynamic class of s1
when execution reaches A?

. Rectangle
. Circle
. Area
none of the above

> WNBR

Static type vs. Dynamic class quiz

public Area asArea (Area s) {
return s;
hy

Rectangle r =
new Rectangle (1,2,1,1);
Circle ¢ = new Circle (1,1,3);

Area s1 =r; // A
Area s2 = c; // B

S2 =r; // C
__D__ x = asArea (r);
__E__ y = asArea (sl);
sl = c; // F

sl =s2; // G

r=c; // H

r=s1;, //1

What is the static type of s2 on
line B?

. Rectangle
. Circle
. Area
none of the above

> WNBR

Static type vs. Dynamic class quiz

public Area asArea (Area s) {
return s;
hy

Rectangle r =
new Rectangle (1,2,1,1);
Circle ¢ = new Circle (1,1,3);

Area s1 =r; // A
Area s2 = c; // B

S2 =r; // C
__D__ x = asArea (r);
__E__ y = asArea (sl);
sl = c; // F

sl =s2; // G

r=c; // H

r=s1;, //1

What type should we declare for
X (in blank D)?

. Rectangle
. Circle
. Area
none of the above

> WNBR

Static type vs. Dynamic class quiz

public Area asArea (Area s) {
return s;
hy

Rectangle r =
new Rectangle (1,2,1,1);
Circle ¢ = new Circle (1,1,3);

Area s1 =r; // A
Area s2 = c; // B

S2 =r; // C
__D__ x = asArea (r);
__E__ y = asArea (sl);
sl = c; // F

sl =s2; // G

r=c; // H

r=s1;, //1

What is the dynamic class of x?

. Rectangle
. Circle
. Area
none of the above

» WN PR

Static type vs. Dynamic class quiz

public Area.asArea (Area s) { What type should we declare for
, rewrn s y (in blank E)?
Rectangle r = %. E¢Ct$ngle
new Rectangle (1,2,1,1); . Circle
Circle ¢ = new Circle (1,1,3); 3. Area
Area s1 =r; // A 4. none of the above
Area s2 = c; // B
s2 =r; // C
__D__ x = asArea (r);
__E__ y = asArea (s1);
sl=c, //F
sl =s2; //G
r=c; // H
r = sl; // 1

Static type vs. Dynamic class quiz

public Area asArea (Area s) {
return s;
hy

Rectangle r =
new Rectangle (1,2,1,1);
Circle ¢ = new Circle (1,1,3);

Area s1 =r; // A
Area s2 = c; // B

S2 =r; // C
__D__ x = asArea (r);
__E__ y = asArea (sl);
sl = c; // F

sl =s2; // G

r=c; // H

r=s1;, //1

What is the dynamic class of y?

. Rectangle
. Circle
. Area
none of the above

» WN PR

Static type vs. Dynamic class quiz

public Area asArea (Area s) {
return s;
hy

Rectangle r =
new Rectangle (1,2,1,1);
Circle ¢ = new Circle (1,1,3);

Area s1 =r; // A
Area s2 = c; // B

S2 =r; // C
__D__ x = asArea (r);
__E__ y = asArea (sl);
sl = c; // F

sl =s2; // G

"

C; // H
; // 1

1
o
n

Is the assignment on line F well
typed?

1. yes
2. no

Static type vs. Dynamic class quiz

public Area asArea (Area s) {
return s;
hy

Rectangle r =
new Rectangle (1,2,1,1);
Circle ¢ = new Circle (1,1,3);

Area s1 =r; // A
Area s2 = c; // B

S2 =r; // C
__D__ x = asArea (r);
__E__ y = asArea (sl);
sl = c; // F

sl =s2; // G

"

C; // H
; // 1

1
o
n

Is the assignment on line G well
typed?

1. yes
2. no

Static type vs. Dynamic class quiz

public Area asArea (Area s) {
return s;
hy

Rectangle r =
new Rectangle (1,2,1,1);
Circle ¢ = new Circle (1,1,3);

Area s1 =r; // A
Area s2 = c; // B

S2 =r; // C
__D__ x = asArea (r);
__E__ y = asArea (sl);
sl = c; // F

sl =s2; // G

"

C; // H
; // 1

1
o
n

Is the assignment on line H well
typed?

1. yes
2. no

Static type vs. Dynamic class quiz

public Area asArea (Area s) {
return s;
hy

Rectangle r =
new Rectangle (1,2,1,1);
Circle ¢ = new Circle (1,1,3);

Area s1 =r; // A
Area s2 = c; // B

S2 =r; // C
__D__ x = asArea (r);
__E__ y = asArea (sl);
sl = c; // F

sl =s2; // G

"

C; // H
; // 1

1
o
n

Is the assignment on line | well
typed?

1. yes
2. no

1. Interface extension

2. Class extension (Simple inheritance)

Interface Extension

Build richer interface hierarchies by extending existing

interfaces.

public 1interface Displaceable {
double getX();
double getY();
void move(double dx, double dy);

}

public 1interface Area {
double getArea();

}

public 1interface Shape extends Displaceable, Area {

Rectangle getBoundingBox();
}

The Shape type includes all
the methods of Displaceable
and Area, plus the new
getBoundingBox method.

Note the use of the “extends”
keyword.

Interface Hierarchy

. class Point implements Displaceable {
Displaceable Afea) omitted
\\\ p }
S //’ class Circle implements Shape {
RN .. // omitted
Shape }1 Rectangle impl ts Sh {
class Rectangle implements Shape
. . — T~ .. // omitted
Point Circle Rectangle }

 Shape s a subtype of both Displaceable and Area.

* Circleand Rectangle are both subtypes of Shape, and, by
transitivity, both are also subtypes of Displaceableand Area.

* Notethatone interface may extend several others.

— Interfaces do not necessarily form a tree, but the hierarchy has no
cycles.

Interface Extension Demo

See: Mainl.java

Class Extension: Inheritance

 C(lasses, like interfaces, can also extend one another.

— Unlike interfaces, a class can extend only one other class.

 The extending class inherits all of the fields and methods of its superclass,
and may include additional fields or methods.

— This captures the “is a” relationship between objects (e.g. a Car is a Vehicle).

— Class extension should never be used when “is a” does not relate the subtype
to the supertype.

class D {
private int x;
private int y;
public int addBoth() { return x + y; }

}

class C extends D { // every C 1is a D

private int z;

public int addThree() {return (addBoth() + z); }
}

Simple Inheritance

In simple inheritance, the subclass only adds new fields or
methods.

Use simple inheritance to share common code among related
classes.

Example: Point, Circle, and Rectangle have identical code for
getX(), getY(),and move() methods when implementing
Displaceable.

Subtyping with Inheritance

Displaceable Area
Displaceablelmpl s &
PRI Shape

N\

Point Circle Rectangle

-Type Cis a subtype of D if D is reachable from C

by following zero or more edges upwards in the
hierarchy.
Implements

------- Extends

- e.g. Circle is a subtype of Area, but Point is not

Example of Simple Inheritance

See: Main2.java

Inheritance: Constructors

e Contructors cannot be inherited (they have the wrong names!)

— Instead, a subclass invokes the constructor of its super class using the keyword ‘super’.

— Super must be the first line of the subclass constructor, unless the parent class
constructor takes no arguments, in which it is OK to omit the call to super (it is called
implicitly).

class D {
private int x;
private int y;
public D (int initX, int initY) { x = initX; y = initY; }
public int addBoth() { return x + y; }
¥

class C extends D {
private int z;
public C (int 1initX, 1int initY, int 1initZ) {
super(initX, 1initY);
Z = 1nitZ;
ks
public int addThree() {return (addBoth() + z); }

Other forms of inheritance

e Javahas otherfeaturesrelated to inheritance (some of which
we will discuss later in the course):

— A subclass might override (re-implement) a method already found in
the superclass.

— A class might be abstract — i.e. it does not provide implementations
for all of its methods (its subclasses must provide them instead)

 These featuresare hard to use properly, and the need for
them arises only in somewhat special cases

— Making reusable libraries
— Special methods: equals and toString

 We recommend avoiding all forms of inheritance (even
“simpleinheritance”) when possible — prefer interfaces and
composition (see Main3.java).

Especially: avoid overriding.

