Programming Languages
and Techniques
(C1S120)

Lecture 37/
April 22, 2016

Encapsulation & Hashing

How is the Game Project going so far?

not started

got an idea

submitted design proposal
started coding

it's somewhat working

it's mostly working
debugging / polishing
done!

08 = en B g e e =

Announcements

* Monday is the bonus lecture! No clickers required.
"Code is Data"

 Game project due Tuesday at midnight, hard

deadline.
NO LATE PROJECTS WILL BE ACCEPTED.

FINAL EXAM

Monday, May 9", 9-11AM

Four locations, see webpage for details

Comprehensive exam over course concepts:
— OCaml material (though we won’t worry much about syntax)
— All Java material (emphasizing material since midterm 2)
— all course content

— old exams posted

Closed book, but:

— One letter-sized, handwritten sheet of notes allowed

Review Session:
— TBA

public class ResArray {

/** Constructor, takes no arguments. */
public ResArray() { -}
/** Access position 1. If position 1 has not yet
* been 1initialized, return 0. */
public int get(int idx) { .. }
/** Update index 1 to contain the value v. */
public void set(int 1idx, int val) { .. }
/*¥* Return the extent of the array. 1i.e.
one past the index of the last nonzero value in the array. */
public int getExtent() { .. }

hy
What should be the result?
ResArray a = new ResArray(); 1.0
a.set(3,2); 5 3
a.set(4,1); 3' 4
a.set(4,0); '
int result = a.getExtent(); 4.5
5. ArraylndexOutOfBoundsException
6. NullPointerException

Resizable Arrays

Object Invariant: extent is
public class ResArray { always 1 past the last nonzero

value in data
(or O if the array s all zeros)

/** Constructor, takes no arguments. */
public ResArray() { .. }

/*¥* Access the array at position 1. If position 1 has not yet
* been 1initialized, return 0.
*/

public int get(int i) { .. }

/*¥* Modify the array at position 1 to contain the value v. */
public void set(int i, int v) { .. }

/*¥* Return the extent of the array. */
public int getExtent() { .. }

ResArray ASM

Workspace

ResArray x = new ResArray();
x.set(3,2);
x.set(4,1);
x.set(4,0);

Stack Heap

ResArray ASM

Workspace

ResArray—x—=mnewResArrayO+
x.set(3,2);
x.set(4,1);
x.set(4,0);

Stack Heap

ResArray
data
extent

ResArray ASM

Workspace

ResArray—x—=newResArrays
*x—set(352)+
x.set(4,1);
x.set(4,0);

Stack Heap

ResArray
data
extent

ResArray ASM

Workspace

ResArray—x—=newResArrays
*x—set(352)+
x.set(4,1);
x.set(4,0);

Stack Heap

ResArray
data
extent

ResArray ASM

Workspace

x.set(4,0);

Stack Heap

ResArray
data
extent

ResArray ASM

Workspace

x.set(4,0);

Stack Heap

ResArray
data
extent

ofJojoj2ijojoje

ResArray ASM

Workspace

data
extent

Resizable Arrays

Object Invariant: extent is
public class ResArray { always 1 past the last nonzero

value in data
(or O if the array s all zeros)

/** Constructor, takes no arguments. */
public ResArray() { .. }

/*¥* Access the array at position 1. If position 1 has not yet
* been 1initialized, return 0.
*/

public int get(int i) { .. }

/*¥* Modify the array at position 1 to contain the value v. */
public void set(int i, int v) { .. }

/*¥* Return the extent of the array. */
public int getExtent() { .. }

/*¥* An array containing all nonzero values */
public int[] valuesQ) { .. }

Values Method

Object Invariant: extent is
public class ResArray { always 1 past the last nonzero

value in data

pr--i_vqte int[] data; (or O if the array s all zeros)
private int extent = 0;

/** An array containing all nonzero values */
public int[] values() {

return data;
¥

Is this a good implementation of
"values" ?

ResArray ASM

Workspace

ResArray—x—newResArrayO
x—set(352)+

int[] y = x.values();

y[3] = 0;

Stack Heap

ResArray
data
extent

ResArray ASM

Workspace

data
extent

ResArray ASM

Workspace

data
extent

ne!

Values method and encapsulation

public int[] values(Q) {
int[] values = new int[extent];
for (int 1=0; i<extent; i++) {
values[i] = data[i];
¥

return values;

¥

* Use encapsulation to preserve invariants about the state of
the object.

* All modification to the state of the object must be done using
the object's own methods.

 Enforce encapsulationby not returningaliases to mutable
data structures from methods.

Hash Sets & Hash Maps

array-based implementation of sets and maps

Hash Sets and Maps: The Big Idea

Combine:

* the advantage of arrays:

— efficient random access to its elements

e with the advantage of a map datastructure

— arbitrary keys (not just integer indices)

How?

 Createan indexintoan array by hashing the datain the key to
turnitintoan int
— Java’s hashCode method maps key data to ints

— Generally, the space of keys is much larger than the space of hashes,
so, unlike array indices, hashCodes might not be unique

Hash Maps, Pictorially

Keys hashCode Array Values
“lohn Doe” 000 null
5 001 . > CSCl
2 |l
“Jimmy Bob” 00 nd
> 003 ° > CBE
“Jane Smith” |
> 253 ¢ > DMD
p ; > 254 e > WUNG
Joan Jones
255 null

A schematic HashMap taking Strings (student names) to Undergraduate Majors.
Here, “John Doe”.hashCode() returns an integer n, its hash, such that n mod
256 is 254.

Hash Collisions

Uh Oh: Indices derived via hashing may not be unique!

“Jane Smith”.hashCode() % 256 = 253
“Joe Schmoe”.hashCode() % 256 => 253

Good hashCode functions make it unlikely that two keys will
produce the same hash

But, it can happen that two keys do produce the same index—
thatis, their hashes collide

Bucketing and Collisions

Keys hashCode Array Buckets of Bindings
“Jimmy Bob” CSCl
“lohn Doe” 000 null f
5 001 (m—
”Jimmy Bob” e null f “Joan Jones” CBE
> 003 o——
i ‘Jane Smith” | DMD
“Jane Smith” f
{ﬁ“ » 253 -— “Joe Shmoe” | MATH
> 254 P
“Joan Jones”
255 null - .
John Doe WUNG

“Joe Schmoe”

Here, “Jane Smith”.hashCode() and “Joe Schmoe”.hashCode() happen to collide. The
bucket at the corresponding index of the Hash Map array stores the map data.

Bucketing and Collisions

e Using an array of buckets
— Each bucket stores the mappings for keys that have the same hash.

— Each bucket is itself a map from keys to values (implemented by a
linked list or binary search tree).

— The buckets can’t use hashing to index the values — instead they use
key equality (via the key’s equals method)

 Tolookup akeyin the Hash Map:
— First, find the right bucket by indexing the array through the key’s hash

— Second, search through the bucket to find the value associated with
the key

* Notthe onlysolution tothe collision problem

Hashing and User-defined Classes

public class Point {
private final int x;
private final int y;
public Point(int x, int y) { this.x = x; this.y = y;

public int getX() { return x; }
public int getY() { return y; }

¥

// somewhere 1in main...

Map<Point,String> m = new HashMap<Point,String>(Q);
m.put(new Point(1,2), "House");
System.out.println(m. containsKey(new Point(1,2)));

What gets printed to the console?

1. true
2. false
3. lhave noidea

HashCode Requirements

Whenever you override equals you must also override hashCode in a
consistent way:

— whenever 01.equals(o2)== true you must ensure that
0l.hashCode() == oZ.hashCode()

Why? Because comparing
hashes is supposed to be
a quick approximation for

equality.

* Note: the converse does not have to hold:
— ol.hashcode() == o02.hashCode()

does not necessarily mean that ol.equals(o2)

Example for Point

public class Point {
@0verride
public int hashCode() {
final int prime = 31;
int result = 1;
result = prime * result + x;

result = prime * result + y;
return result;

Examples:

— (new Point(1,2)).hashCode() vyields 994
— (new Point(2,1)).hashCode() vyields 1024

Note that equal points have the same hashCode
Why 31? Prime chosen to create more uniform distribution

Note: eclipse can generate this code

Computing Hashes

* Whatis a good recipe for computing hash values for your own classes?

— intuition: “smear” the data throughout all the bits of the resulting
integer

1. Start with some constant, arbitrary, non-zero intin result.

2. For each significant field f of the class (i.e. each field taken into account
when computing equals), compute a “sub” hash code C for the field:
— Forboolean fields: (f 72 1 : @)
— For byte, char, int, short: (1nt) f
— Forlong: (int) (f A (f >>> 32))
— For references: 0 if the reference is null, otherwise use the hashCode() of
the field.

3. Accumulate thosg subhashes into the result by doing (for each field’s C):
result = prime * result + c;

4. return result

Hash Map Performance

Hash Maps can be used to efficiently implement Maps and Sets

— There are many different strategies for dealing with hash collisions with
various time/space tradeoffs

— Real implementations also dynamically rescale the size of the array (which
might require re-computing the bucket contents)

If the hashCode function gives a good (close to uniform) distribution of
hashes the buckets are expected to be small (only one or two elements)

 Performance depends on workload

Terminological Clash

The word "hash" is also used in cryptography
SHA-1, SHA-2, SHA-3, MD5, etc.

Cryptographic hashes are intended to reduce large byte
sequences to short byte sequences

— Very hard to invert

— Should only rarely have collisions

— Are considerably more expensive to compute than hashCode
(so not suitable for hash tables)

Never use hashCode when you need a cryptographic hash!
— See CIS 331 for more details

Collections: take away lessons

equals
hashCode

compareTlo

Collections Requirements

All collections use equals

Defaults to == (reference equality)

Override equals to create structural equality

Should be: false for distinct instance classes

An equivalence relation: reflexive, symmetric, transitive

HashSets/HashMaps use hashCode

Override when equals is overridden

Should be compatible with equals

Should try to "distribute" the values uniformly
Iterator not guaranteed to follow element order

Ordered collections (TreeSet, TreeMap) need to implement
Comparable<Object>

Override compareTo
Should implement a total order

Strongly recommended to be compatible with equals
(i.e. ol.equals(o02) exactlywhen ol.compareTo(o2) ==0)

Comparing Collection Performance

HashTest.java

