Name: ____________________________

CIS 120e Midterm I
October 15, 2010

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>/18</td>
</tr>
<tr>
<td>2</td>
<td>/12</td>
</tr>
<tr>
<td>3</td>
<td>/12</td>
</tr>
<tr>
<td>4</td>
<td>/16</td>
</tr>
<tr>
<td>5</td>
<td>/12</td>
</tr>
<tr>
<td>6</td>
<td>/08</td>
</tr>
<tr>
<td>7</td>
<td>/22</td>
</tr>
<tr>
<td>Total</td>
<td>/100</td>
</tr>
</tbody>
</table>

- Do not begin the exam until you are told to do so.
- You have 50 minutes to complete the exam.
- There are 10 pages in this exam.
- Make sure your name is on the top of this page.
1. **Program Design (18 points total)**

Use the four-step design methodology to implement a program that, given a list of integers, calculates the list of differences between adjacent elements of the list. For example: given the input list [1;3;5;10;17] the output should be [2;2;5;7] because 3-1 = 2 and 5-3 = 2 and 10-5 = 5, etc.

(0 points) Step 1 is *understanding the problem*. You don’t have to do anything for this part—your answers below will demonstrate whether or not you succeeded with Step 1.

(6 points) Step 2 is *formalizing the interface*. Complete the following function declaration template according to the problem description:

```ocaml
let rec diffs (l:int list) : int list = ...
```

(6 points) Step 3 is *writing test cases*. Complete the following three assertions with examples of the expected behavior. Note that some test cases are better than others, and partial credit will be assigned accordingly: make sure your tests cover a sufficiently broad range of “interesting” inputs.

```ocaml
;; assert_eq [1;3;5;10;17] [2;2;5;7]
```

```ocaml
 ;; assert_eq [] []
```

```ocaml
 ;; assert_eq [3] []
```

(6 points) Step 4 is *implementing the program*. Fill in the body of the `diffs` function to complete the design:

```ocaml
begin match l with
 | [] -> []
 | _::[] -> []
 | x::y::t -> (y - x)::diffs(y::t)
end
```
2. List Recursion (12 points)

For each of the following programs, circle the final value computed for \(r \) (choose each answer from the given bullet lists):

a. let \(l = [1;2;3] \)
 let rec foo (l:int list) : int =
 begin match l with
 | [] -> 0
 | h::t -> (h * h) + (foo t)
 end
 let r = foo l
 • 6
 • 14
 • 24
 • 36

b. let \(l = [1;2;3] \)
 let rec baz (l:int list) : int =
 begin match l with
 | [] -> failwith "baz doesn’t work on []"
 | h::t -> let x = baz t in
 if h > x then x else h
 end
 let r = baz l
 • Exception Failure: "baz doesn’t work on []"
 • 1
 • 2
 • 3

c. let \(l = [1;2;3] \)
 let rec moo (l:int list) : int list =
 begin match l with
 | [] -> []
 | h::t -> moo t @ [h] @ moo t
 end
 let r = moo l
 • [1;2;3;1;2;3]
 • [1;2;1;3;1;2;1]
 • [3;2;3;1;3;2;3]
 • [1;2;3;1;3;2;1]
3. Types (12 points)

a. int
 f. int ref
 k. unit
 b. int list
 g. int list ref
 l. unit ref
 c. 'a list
 h. int ref list
 d. int -> int
 i. int option
 e. int list -> int
 j. 'a option

For each OCaml expression below, write down its type or write “ill typed” if there is a type error. If more than one type fits, choose the most generic one.

 a. g (ref [1;2;3])
 b. ill typed (ref 0) + (ref 5)
 c. c [] @ []
 d. d let y = 4 in fun (x:int) -> y
 e. k let x = ref 0 in x := 1
 f. a let f (x:int list) = 3 in f []
4. Binary Search Trees (16 points)

Recall the definition of generic binary trees:

```ml
type 'a tree =
  | Empty
  | Node of 'a tree * 'a * 'a tree
```

a. (8 points) State the binary search tree invariant. Briefly explain one program-design strategy for ensuring that clients of the BST operations cannot break that invariant.

b. (8 points) Complete the definition of the `insert` function for **binary search trees**. You may assume that the input tree `t` satisfies the BST invariant as shown in class; the output tree must also satisfy the BST invariant.

```ml
let rec insert (x:'a) (t:'a tree) : 'a tree =
  begin match t with
  | Empty -> Node(Empty,x,Empty)
  | Node(lt,y,rt) ->
    if x = y
    then t
    else if x < y
    then Node(insert x lt,y,rt)
    else Node(lt,y, insert x rt)
  end
```
5. First-class Functions (12 points)

Recall the definition of fold over lists:

```ocaml
let rec fold (combine: 'a -> 'b -> 'b) (base:'b) (l:'a list) : 'b =
begin match l with
| [] -> base
| h::t -> combine h (fold combine base t)
end
```

For each of the following functions, choose the combination of base and comb arguments that should be given to fold to implement the desired functionality.

a. flatten takes a list of lists and returns their concatenation.

```ocaml
let flatten(l:'a list list) : 'a list = fold comb base l
```

base should be: comb should be:

- ```[]``` • `fun (x:'a list) (r:'a list) -> x @ r`
- ```[]``` • `fun (x:'a) (r:'a list) -> x :: r`
- ```[x]``` • `fun (x:'a list) (r:'a list list) -> [x]:r`
- ```None``` • `fun (x:'a) (r:'a list) -> [x]@r`

b. maximum returns None if the list is empty and Some \(n \) otherwise, where \(n \) is the maximum element of the list.

let maximum (l:'a list) : 'a option = fold comb base l

base should be: comb should be:

- []
 - fun (h:'a) (r:'a) -> if h > r then h else r
- x
 - fun (h:'a) (r:'a option) ->
 - begin match r with
 - | None -> Some h
 - | Some x -> if h > x then Some h else None
 - end
- Some x
- None

- ANSWER:

 fun (h:'a) (r:'a option) ->
 begin match r with
 | None -> Some h
 | Some x -> if h > x then Some h else Some x
 end

 fun (h:'a) (r:'a option) ->
 begin match r with
 | None -> Some h
 | Some x -> if h > x then Some x else Some h
 end
6. **Generic Programming and First-class Functions (8 points)**

Implement a function `comp` that has the following type.

\[
\text{comp: ('b -> 'c) -> ('a -> 'b) -> 'a -> 'c}
\]

Complete the definition of `comp` below by adding suitably typed arguments, a return type, and function body:

\[
\text{let comp (g:'b -> 'c) (f:'a -> 'b) (x:'a) : 'c = g(f(x))}
\]
7. Abstract Stack Machines (22 points total)

For each of the following programs, draw the state of the abstract stack machine (its workspace, stack and heap) at the point just after a binding for x has been pushed to the stack.

Assume that the program has access to the usual generic tree datatype:

```
type 'a tree =
    | Empty
    | Node of 'a tree * 'a * 'a tree
```

Make sure your drawings are legible! Use scratch paper to work out the answer and then transcribe a clean version of the final state to this page for grading.

a. (10 points)

```
let y = Empty in
let x = Node(y, 3, y) in
x
```

Answer

b. (12 points)

```
let y = ref 0 in
let z = y in
let _ = z := 3 in
let w = !y in
let _ = z := 4 in
let x = !y
x
```