Announcements

• Homework 2 is on the web pages.
 – On-time due date: Wednesday 22 Sept. at 11:59:59pm
 – Get started early, and seek assistance if you get stuck!
A binary tree is either empty, or a node with at most two children, both of which are also binary trees.

A leaf is a node whose children are both empty.
type tree =
 | Empty
 | Node of tree * int * tree

let t1 =
 Node(Node(Empty, 1, Empty),
 3,
 Node(Empty, 2,
 Node(Empty, 4, Empty)))
Search during \((\text{contains } t \ 8)\)
Searching for Data in a Tree

• Recall the contains function:

```ocaml
let rec contains (t:tree) (n:int) : bool =
    begin match t with
    | Empty -> false
    | Node(lt,x,rt) ->
        if x = n then true
        else contains lt n || contains rt n
    end
```

• It searches through the tree, looking for n
 – In this case, the search is a pre-order traversal of the tree
 – Other traversal strategies would work equally well

• In the worst case, it might search through the entire tree
 – Also, the tree might contain duplicate entries, which means more work

• Can we do better?
Binary Search Trees (BST)

• Key insight:
 – We can use an ordering on the data to cut down the search space
 – This is why telephone books are arranged alphabetically

• A BST is a binary tree with additional invariants:

 • Empty is a BST
 • Node(lt, x, rt) is a BST if
 - lt and rt are both BSTs
 - all nodes of lt are < x
 - all nodes of rt are > x
Note that the BST invariants hold for this tree.
Search in a BST: (lookup t 8)
Searching a BST

(* Assumes that t is a BST *)

let rec lookup (t:tree) (n:int) : bool =
begin match t with
 | Empty -> false
 | Node(lt,x,rt) ->
 if x = n then true
 else if n < x then (lookup lt n)
 else (lookup rt n)
end

• The BST invariants guide the search.
• Note that lookup may fail (i.e. return an incorrect answer) if the input is not a BST.
How to we construct a BST?

- **Option 1:**
 - Write a function to check whether an arbitrary tree satisfies the BST invariant.
 - Call the check whenever we need to know about a given tree.

- **Option 2:**
 - Create functions that *preserve* the BST invariant
 - Starting from some trivial BST (e.g. *Empty*), we can apply such functions to get other BSTs
 - Examples: *insert* and *delete*
Checking the BST Invariants

(* Check whether all nodes of t are < n *)
let rec tree_less (t:tree) (n:int) : bool =
begin match t with
| Empty -> true
| Node(lt,x,rt) ->
 x < n && (tree_less lt n) && (tree_less rt n)
end

(* Determines whether t is a BST *)
let rec is_bst (t:tree) : bool =
begin match t with
| Empty -> true
| Node(lt,x,rt) ->
 is_bst lt && is_bst rt &&
 (tree_less lt x) && (tree_gtr rt x)
end

Definition of tree_gtr omitted (it’s similar to tree_less)
Inserting a new node: \((\text{insert } t \ 4)\)
Inserting a new node: \((\text{insert \ t} \ 4)\)
Inserting Into a BST

(* Inserts n into the BST t *)
let rec insert (t:tree) (n:int) : tree =
 begin match t with
 | Empty -> Node(Empty,n,Empty)
 | Node(lt,x,rt) ->
 if x = n then t
 else if n < x then Node(insert lt n, x, rt)
 else Node(lt, x, insert rt n)
 end

• Note the similarity to searching the tree.
• Assuming that t is a BST, the result is also a BST. Why?
Deletion – No Children: \((\text{delete } t \ 3)\)
Deletion – No Children: (delete t 3)

If the node to be deleted has no children, simply replace it by the Empty tree.
Deletion – One Child: \((\text{delete t 7})\)
Deletion – One Child: (delete t 7)

If the node to be delete has one child, replace the deleted node by its child.
Deletion – Two Children: \((\text{delete } t \ 5)\)
If the node to be delete has two children, *promote* the maximum child of the left tree.
Subtleties of the Two-Child Case

• Suppose Node(lt,x,rt) is to be deleted and lt and rt are both themselves nonempty trees.

• Then:
 – There exists a maximum element, m, of lt (why?)
 – m is smaller than every element of rt (why?)

• To promote m we replace the deleted node by:
 Node(delete lt m, m, rt)
 – i.e. we recursively delete m from lt
 – Note the resulting tree satisfies the BST invariants

• Question: will this always work?