Programming Languages and Techniques (CIS120e)

Lecture 7
Sep 15, 2010

Binary Search Trees (Part II), Generics
Announcements

• Homework 2 is due tonight at 11:59:59pm.

• Homework 3 will be available on the web soon.
 – Due next Wednesday
 – Practice with BSTs, generic functions, abstract datatypes
Recap: Binary Search Trees (BST)

- A BST is a binary tree with additional *invariants*:
 - Empty is a BST
 - `Node(lt, x, rt)` is a BST if
 - `lt` and `rt` are both BSTs
 - all nodes of `lt` are < `x`
 - all nodes of `rt` are > `x`

- A BST is a way of representing a *set* of integers
- The invariant enables efficient *lookup*
 - Only need to search one path from the root (not the whole tree)
- Last time: `lookup`, `is_bst`, `insert`, started `delete`
Note that the BST invariants hold for this tree.
Deletion – No Children: $(\text{delete } t 3)$
Deletion – No Children: (delete t 3)

If the node to be deleted has no children, simply replace it by the Empty tree.
Deletion – One Child: (delete t 7)
Deletion – One Child: (delete t 7)

If the node to be deleted has one child, replace the deleted node by its child.
Deletion – Two Children: (delete t 5)
Deletion – Two Children: (delete t 5)

If the node to be deleted has two children, *promote* the maximum child of the left tree.
Subtleties of the Two-Child Case

• Suppose Node(lt,x,rt) is to be deleted and lt and rt are both themselves nonempty BSTs.

• Then:
 – There exists a maximum element, m, of lt (why?)
 – m is smaller than every element of rt (why?)

• To promote m we replace the deleted node by:
 Node(delete lt m, m, rt)
 – i.e. we recursively delete m from lt
 – Note the resulting tree satisfies the BST invariants

• Question: will this always work?
Problem: `tree_max` isn’t defined for all binary trees.
- In particular, it isn’t defined for the empty binary tree
- Technically, `tree_max` is a partial function

What to do?
Solutions to Partiality: Option 1

- Return a *default or error value*

 - e.g. define `tree_max Empty` to be `-1`
 - Error codes used often in C programs; null used often in Java

- But...

 - What if -1 (or whatever default you choose) really *is* the maximum value?
 - Can lead to many bugs if the default or error value isn’t handled properly by the callers.

- Defaults should be avoided if possible
Solutions to Partiality: Option 2*

• Abort the program:
 – In OCaml: `failwith “an error message”`

• Whenever it is called, `failwith` aborts the program and reports the error message it is given.

• This solution to partiality is appropriate whenever you know that a certain case is impossible.
 – Often happens when there is an invariant on a datastructure
 – The compiler isn’t smart enough to figure out that the case is impossible...
 – `failwith` is also useful to “stub out” unimplemented parts of your program.

*There are a few other ways to deal with partiality (using datatypes or exceptions) that we’ll see later in the course
BST Invariants and tree_max

• For delete, we never need to call tree_max on an empty tree
 – This is a consequence of the BST invariants and the case analysis done
 by the delete function.

• So: we can write tree_max assuming that the input tree is a
 nonempty BST:

```ml
let rec tree_max (t:tree) : int =
  begin match t with
  | Node(_,x,Empty) -> x
  | Node(_,_,rt) -> tree_max rt
  | _ -> failwith "tree_max called on Empty"
  end
```

• Note: BST invariant is used because it guarantees that the
 maximum valued node is farthest to the right
(* Deletes n from the BST tree t *)

let rec delete (t:tree) (n:int) : tree =
begin match t with
| Empty -> Empty
| Node(lt,x,rt) ->
 if x = n then
 begin match (lt, rt) with
 | (Empty, Empty) -> Empty
 | (Node _, Empty) -> lt
 | (Empty, Node _) -> rt
 | _ -> let m = tree_max lt in
 Node(delete lt m, m, rt)
 end
 else if n < x then Node(delete lt n, x, rt)
 else Node(lt, x, delete rt n)
end
Balanced Trees

• Lookup, insert, and delete take time at worst proportional to the \textit{height} of the tree.
 – How to minimize the \textit{height}?
 – A balanced tree is one in which all leaves have exactly distance \(k \) or distance \(k+1 \) from the root.

• Our insert function can yield very \textit{unbalanced} trees:
 – See CIS121 for ways of improving search trees to maintain balance...
Demo: Binary Search Trees
Generic Functions and Data
Structurally Identical Functions

• Observe: many functions on lists, trees, and other datatypes don’t depend on the contents, only on the structure.

• Compare: length for “int list” vs. “string list”

```ocaml
let rec length1 (l:int list) : int =
begin
  match l with
  | [] -> 0
  | _::tl -> 1 + (length1 tl)
end
```

```ocaml
let rec length2 (l:string list) : int =
begin
  match l with
  | [] -> 0
  | _::tl -> 1 + (length2 tl)
end
```

The functions are identical, except for the type annotation for l.
OCaml provides syntax for *generic function* types

- lets us share the common definition:

```ocaml
let rec length (l:'a list) : int =
  begin match l with
  | [] -> 0
  | _ :: tl -> 1 + (length tl)
  end
```

• Notation: ‘a is a *type variable*; it indicates that the function length can be used on a *t list* for any type *t*.

• Examples:
 - length [1;2;3] use length on an int list
 - length [“a”;”b”;”c”] use length on a string list
Generic List Append

let rec append (l1: 'a list) (l2: 'a list) : 'a list =
 begin match l1 with
 | [] -> l2
 | h::tl -> h::(append tl l2)
 end

Note that the two input lists must have the same type of elements.

The return type can also be generic – in this case the result is of the same type as the inputs.

Pattern matching works over generic types. In the body of the branch:
 h has type 'a
 tl has type 'a list

The return type can also be generic – in this case the result is of the same type as the inputs.
Generic Zip

Functions can operate over multiple generic types.

let rec zip (l1:'a list) (l2:'b list) : ('a*'b) list = begin
match (l1,l2) with
| (h1::t1, h2::t2) -> (h1,h2)::(zip t1 t2)
| _ -> []
end

- Distinct type variables can be instantiated differently:
 `zip [1;2;3] ["a";"b";"c"]`
- Here, ‘a’ instantiated to int, ‘b’ to string
- Result is the (int * string) list:
 `[(1,"a");(2,"b");(3,"c")]`
User-defined Generic Datatypes

• Recall our integer tree type:

\[
\text{type tree} = \\
| \text{Empty} \\
| \text{Node of tree * int * tree}
\]

• We can define a generic version by adding a type parameter, like this:

\[
\text{type } \text{'a tree} = \\
| \text{Empty} \\
| \text{Node of } (\text{'a tree) * 'a * (\text{'a tree})}
\]

Parameter ‘a used here

Note that the recursive uses also mention ‘a
Function Types

• In OCaml, the type of functions from input t to output u is written:

\[t \rightarrow u \]

• Functions with multiple arguments use multiple arrows

• Here are some examples we have already seen:

\[
\begin{align*}
\text{size} & : \text{tree} \rightarrow \text{int} \\
\text{hamming_distance} & : \text{helix} \rightarrow \text{helix} \rightarrow \text{int} \\
\text{acids_of_helix} & : \text{helix} \rightarrow \text{acids list} \\
\text{length} & : \text{‘a list} \rightarrow \text{int} \\
\text{zip} & : \text{‘a list} \rightarrow \text{‘b list} \rightarrow (\text{‘a*‘b}) \text{ list} \\
\text{lookup} & : \text{tree} \rightarrow \text{int} \rightarrow \text{bool}
\end{align*}
\]
Demo: Generic Trees and Functions
A Design Problem

• Suppose that at Step 2 ("Formalize the Interface") we decide that we need to process a set of values.
 – Examples: set of students in a class, set of coordinates in a graph, set of answers to a survey, set of samples from Gulf oil spill probes, ...

• Given what you know of OCaml, what would you do?
Abstract Datatypes

BIG IDEA: Hide the *concrete representation* of a datatype behind an *abstract interface*.

- **Example:**
 - concrete ‘set’ representation – the *implementation* – is a list or a tree
 - abstract interface defines the operations in terms of ‘set’

- The interface restricts how other parts of the program can interact with the data.
 - The other parts of the program can’t break any invariants that are being maintained behind the interface.
 - It is possible to change the implementation of the abstract datatype without changing the rest of the program.
Example Module Interface: set.mli

```ocaml
type 'a set

val empty : 'a set
val is_empty : 'a set -> bool
val member : 'a -> 'a set -> bool
val insert : 'a -> 'a set -> 'a set
val union : 'a set -> 'a set -> 'a set
val remove : 'a -> 'a set -> 'a set
val filter : ('a -> bool) -> 'a set -> 'a set
val to_list : 'a set -> 'a list
```

Keyword ‘val’ indicates values that must be defined.

- OCaml lets you write *interfaces* (as above) in a .mli file
- The corresponding *implementation* goes in the .ml file
The implementation has to include all of the values
- It can contain more functions and type definitions (e.g. auxiliary functions)
- The types of the provided implementations must match the interface