1. Prove or disprove: You are given a connected undirected graph $G = (V, E)$ with a weight function w defined over its edges. Let $s \in V$ be an arbitrary vertex in G. Starting at vertex s, if you do a depth-first search (DFS) in G such that the edges going out of any vertex are always explored in increasing order of weight, then the resulting DFS tree is also a minimum spanning tree.

2. You are given an input stream which will display n integers, and you only get to view each element once. Design an efficient algorithm which will find the k largest elements in the stream, using at most $O(k)$ space (assume $k << n$).

3. Prove that an edge e is contained in every spanning tree for a connected graph G if and only if removal of e disconnects G.

4. Let $G = (V, E)$ be a strongly connected directed graph and let T be a DFS tree in G. Prove that if all the forward edges in G, with respect to T, are removed from G, the resulting graph is still strongly connected.

5. Give an example of a weighted connected undirected graph $G = (V, E)$ and a vertex v such that the minimum spanning tree of G is different than the shortest path tree rooted at v. If edge weights are both distinct and positive, can the two trees be completely disjoint?