Problem 1

Since f is continuous on the closed interval $[a, b]$, by the Extreme Value Theorem, the function f takes on a maximum value M and a minimum value N on $[a, b]$. Then

$$(b - a)N \leq \int_a^b f(x) \, dx \leq (b - a)M$$

so

$$N \leq \frac{1}{b - a} \int_a^b f(x) \, dx \leq M$$

By the Intermediate Value Theorem, there must exist a value of c with $a \leq c \leq b$ such that

$$f(c) = \frac{1}{b - a} \int_a^b f(x) \, dx.$$

Note: I can make a reference to a labeled thing like equation (1) with \eqref, or I can do it like with \autoref to get Equation 1. Here’s a QED tombstone to mark the end of my solution.

Problem 2

I can reference another problem like this: See Problem 3 b or Problem 1.

Problem 3

3 a

The Ackermann function is

$$A(m, n) := \begin{cases}
 n + 1 & \text{if } m = 0 \\
 A(m - 1, 1) & \text{if } m > 0 \text{ and } n = 0 \\
 A(m - 1, A(m, n - 1)) & \text{if } m > 0 \text{ and } n > 0
\end{cases}$$

3 b

This is how you do an aligned equation environment:

\[
\begin{align*}
 d(f, h) &= \int_a^b |f(x) - h(x)| \, dx \\
 &= \int_a^b |f(x) - g(x) + g(x) - h(x)| \, dx \\
 &\leq \int_a^b (|f(x) - g(x)| + |g(x) - h(x)|) \, dx \\
 &= \int_a^b |f(x) - g(x)| \, dx + \int_a^b |g(x) - h(x)| \, dx \\
 &= d([f], [g]) + d([g], [h])
\end{align*}
\]
or you can do this to suppress numberings for specific lines

\[
d(f, h) = \int_a^b |f(x) - h(x)| \, dx \\
= \int_a^b |f(x) - g(x) + g(x) - h(x)| \, dx \\
\leq \int_a^b (|f(x) - g(x)| + |g(x) - h(x)|) \, dx \\
= \int_a^b |f(x) - g(x)| \, dx + \int_a^b |g(x) - h(x)| \, dx \\
= d([f], [g]) + d([g], [h])
\]

so you can have a reference to just (2).

\[\square \]

Problem 4

4 a

Follow [this link](#) to find out more about source code formatting.

```java
for (int n : new int[] {17, 34, 51, 68, 85}) {
    System.out.println(n);
}
```