Learning Goals

During this lab, you will:

- approach problems with consideration for runtime complexity
- apply sorting as a tool for solving some real problems
- consider tradeoffs between different solutions to problems
- get a feel for the sort of problem solving that this course will focus on

Problem 0: General Approaches

When faced with these sorts of algorithmic problems, there are some general considerations to take:

- Is there a known algorithm that solves this problem, or a related problem?
- Which kinds of data structures fit the operations we need to do?
- Do we have bounds on our input or on our runtime requirement?
- Does the problem give us additional information that might help us do better?
- Ignoring efficiency considerations, what is the very first working solution you can come up with?

Problem 1: Unique Character Strings

Given a string of length \(n \), determine whether it contains all unique characters—or, whether any characters are used more than once.

Food for Thought:

- If you do it as fast as possible, how much extra space is needed?
- If you do it with no extra space, how quickly can you do it?
- What if you aren’t worried about destroying the input string?

Problem 2: Anagram Strings

Given two strings, determine whether they are anagrams of each other.

Example:

\[\text{TOMMARVOLORIDDLE} \leftrightarrow \text{IAMLORDVOLDDEMORT}\]

The above are anagrams of each other!

(Sorry if we spoiled book 2 of Harry Potter for you...)

- If you do it as fast as possible, how much extra space is needed?
- If you do it with no extra space, how quickly can you do it?
- What if you aren’t worried about destroying the input strings?
Problem 3: Dutch National Flag Problem

Given \(n \) balls of three colors—say red, white, and blue—arranged randomly in a line, sort them as quickly as possible into contiguous groups of red, white, and blue, with the groups in that order.

\[\begin{array}{cccccccc}
\text{Blue} & \text{Blue} & \text{Red} & \text{Red} & \text{Blue} & \text{Red} \\
\downarrow & & & & & & \\
\text{Red} & \text{Red} & \text{Blue} & \text{Blue} & \text{Blue} & \text{Red} \\
\end{array} \]

- How fast can generic sorts do this?
- What additional information do we have, beyond what generic sorts assume?
- Can we sort it in-place in \(O(n) \) time?

Problem 4: Row/Column-sorted Matrix Membership

Given an \(m \) by \(n \) matrix of integers, where each row and each column of the matrix is sorted, determine whether an integer \(k \) exists somewhere in the matrix.

- How could we do this if we didn’t know the rows and columns were sorted?
- How does knowing the rows and columns are sorted let us do this faster?
- What is our optimal runtime?

Problem 5: Stable Matching

Consider a town with \(n \) men and \(n \) women seeking to get married to one another. Each man has a preference list that ranks all the women, and each woman has a preference list that ranks all the men.

The set of all \(2n \) people is divided into two categories: good people and bad people. Suppose that for some number \(k \), \(1 \leq k \leq n - 1 \), there are \(k \) good men and \(k \) good women; thus there are \(n - k \) bad men and \(n - k \) bad women.

Everyone would rather marry any good person than any bad person. Formally, each preference list has the property that it ranks each good person of the opposite gender higher than each bad person of the opposite gender: its first \(k \) entries are the good people (of the opposite gender) in some order, and its next \(n - k \) are the bad people (of opposite gender) in some order.

Show that in every stable matching, every good man is married to a good woman.

- What are the properties of a stable matching?
- Try to convince yourself that the claim is true.
- Which proof technique (think 160!) might be best for this type of proof?