Hashing and Tries—Monday, April 2/Tuesday, April 3

Learning Goals

During this lab, you will:

- Motivate the need for hash tables
- Review the Simple Uniform Hashing Assumption
- Compare collision resolution strategies (chaining, open addressing, double hashing)
- Review tries and trie operations
- Explore an application of a trie

Hashing

Motivation

As you’ve undoubtedly already realized, many applications call for (large) dynamic sets that require support for the basic dictionary operations SEARCH(X), INSERT(X) and DELETE(X). As a concrete example, imagine that we had the set of all Penn students’ names and we wanted quick lookups to see if a name existed. We might turn to a linked list, but lookup is $O(n)$. A better choice might be a balanced BST with student names as keys. This would give us $O(lg\ n)$ time lookups and insertions, which is already pretty good!

But say we’re going to be doing a lot of repeated lookups, so we’d like lookups on the order of constant time. How could we achieve this?

The Theory of Hashing

Direct Addressing

The first intuitive idea is to leverage the constant time lookup property of arrays. We can define a universe U of possible keys (which in this case is all possible strings up to size l, where l is the length of the longest name) and keep an array A of size $|U|$. Then we can define a one-to-one mapping M where we assign every string in U to a number from 1 to $|U|$ and keep every name k in the location $A[M(k)]$.

This method would give us guaranteed $O(1)$ lookups and inserts, but would take space $\Theta(|U|)$ which can be impractically large. For example, assuming that the longest name at Penn is 20 characters long (including spaces), there would be 2^{20} strings in our universe. This is clearly inefficient because there is no way we are going to be storing that many names.

Thus, Direct Addressing could be a good option when U is small. But as U becomes very large, storing an array of size $|U|$ can be impractical due to memory limitations. Furthermore, often the set of actual keys K stored is much less than $|U|$, as such the extra space allocated to A would be wasted.
Hash Tables

Instead of having one-to-one mappings from keys to slots in our array (referred to more generally as “table”) of size |U|, we can define a deterministic hash function h that maps each key to some slot in our table $T[0..m−1]$ of size m. Formally, the hash function h is:

$$h : U \rightarrow \{0, ..., m - 1\}$$

where usually $m << |U|$.

By initializing a table of size $m << |U|$ and defining the hash function h, we’ve managed to save a lot of space. However, this improvement (like many things in life), comes at a cost: insertions and lookups are now on average $O(1)$ — worst case for some particular insert or lookup may be $O(n)$ — instead of guaranteed $O(1)$. Furthermore, by the pigeonhole principle, two keys in U may now hash to the same slot, a situation known as a collision. Separate chaining and Open Addressing are two common ways of resolving collisions, which we’ll explore more in depth later.

N.B.: Our opening example used student names (which are strings) as keys. It should be noted that it is not difficult to convert any key to some non-negative integer (see discussion questions). As such, in the rest of our discussions we assume keys are non-negative integers.

A brief note on the hash function

Let’s take a brief moment to consider what might make a good hash function. Consider the hash function $h(k) = k \mod 2$. We quickly realize that this is a horrible hash function — regardless of how large our symbol table is, we will have repeated collisions at slots 0 and 1.

It intuitively follows that we seek a hash function that distributes the universe U of keys as evenly as possible among the m slots of our table. We can formalize this concept and give it a name:

Simple Uniform Hashing Assumption: Under this assumption, any key k is equally likely to be mapped to any of the m slots in our hash table T, independently of where any other key is hashed.
to. In other words, the probability of hashing some key \(k \) not already present in the hash table into any arbitrary slot in \(T \) is \(\frac{1}{m} \).

A direct result of this assumption is that if we would like to store \(n \) elements in a table of size \(m \), each slot will roughly get the same number (\(\frac{n}{m} \)) of collisions. This is also known as the **load factor**, commonly denoted as by \(\alpha \), of the table \(T \). The simple uniform assumption, however unrealistic, is used in the running time analysis of different collision resolution schemes, so make sure to keep it in mind.

The simple universal assumption, is afterall, just an **assumption**. In practice we rarely know the probability distribution from which the keys are drawn, and so we employ various heuristics when designing hash functions to achieve approximately an even distribution. See CLRS section 11.3 for a more in depth discussion of this topic.

Furthermore, here’s something cool. Suppose that in our implementation of HashTable we always use the same hash function for every instance of our table. This is quite dangerous because if an adversary got hold of our hash function, he or she could work out what keys collide in our hash function and thus devise a dataset that would slow down our code and bring our system to a halt. The attacker can actually exploit the fact that insertions and lookups for hashtables are worst case \(O(n) \) — say when all elements hash to the same slot — to start a denial of service attack on your application.

Thus in practice we often introduce randomization techniques to alleviate this worst case behavior. We maintain a carefully selected set of hash functions called a **hash family**, and whenever a new instance of our table is initialized, we choose a hash function uniformly at random from this set of hash functions to use for that specific table. Since the adversary doesn’t know which hash function we’ll use before hand, he or she cannot engineer a specific dataset that takes advantage of any particular hash function. The latest version of Java does this automatically. Note that each hash function \(h \) in the hash family is still deterministic — that is, for a particular key \(k \) and hash function \(h \), \(h(k) \) always has to produce the same result. The randomization comes from which hash function we choose to use when we initialize a new Hash Table. Once a hash function is chosen uniformly at random for an instance, it is used for the duration of the instance. There is a precise notion as to how to carefully select this set of hash functions (universal family) to consistently give good average case behavior, in depth discussion of which can be found in CLRS 11.3.3.

Collision Resolution: Separate Chaining

The most obvious way to handle collisions is with a linked list. In other words, we chain all the keys that are hashed to slot \(i \) in a linked list and store that list at slot \(i \) in \(T \). To find an element hashed to slot \(i \), we

\[
E[X_i] = \sum_{j=1}^{n} P_r[\text{element } j \text{ hashed to slot } i] = \sum_{j=1}^{n} P_r[h(k_j) = i]
\]

\[
= \sum_{j=1}^{n} \frac{1}{m} \quad \text{(by Simple Uniform Hashing)}
\]

\[
= \frac{n}{m}
\]

As a check, we can use Linearity of Expectation to solve for \(E[X] \):

\[
E[X] = \sum_{i=1}^{m} E[X_i]
\]

\[
= \sum_{i=1}^{m} \frac{n}{m}
\]

\[
= n.
\]
Figure 2: Here, there is a collision between k_2 and k_5 since they are mapped to the same slot.

would simply traverse the linked list until we found it (in the case of a successful search) or until we reached
the end of the list (in the case of an unsuccessful search). Because of the simple uniform hashing assumption,
the keys are roughly equally distributed amongst the m linked lists in our hash table. With some math, we
can show that on average, the number of elements examined in a successful search is $\Theta(1 + \alpha)$ where
α is the load factor \textbf{[Theorem 1]}. The number of elements examined in an unsuccessful search is $\Theta(1 + \alpha)$ as well
\textbf{[Theorem 2]}. If α is small, we can say that this is $O(1)$. However, we do not always know what
α is at any given moment—thus we say that we can perform insertions and searches in expected $O(1)$ time.

Collision Resolution: Open Addressing

\textbf{Preface:} In this discussion, we will not consider deletions, as they can be quite tricky to implement with
open addressing (See CLRS pg 271). As such, chaining is more commonly used when support for deletion
of keys is necessary.

There are other ways besides chaining to handle collisions, and most of these strategies fall under the
broad title of \textit{open addressing}. In the technique of open addressing, instead of storing values that map to
the same slot in a linked list, we find the “next” open spot in the same hash table to store our value. A
consequence of this is that the hash table may become full, and the load factor $\alpha = \frac{n}{m}$ will always be less
than or equal to 1.

When inserting a new element, we successively examine, or \textbf{probe}, the hash table according to some
rule until we find an open spot to put our new element. We can define our \textbf{probe sequence} as $S = \{h_0(x), h_1(x), h_2(x), \ldots, h_{m-1}(x)\}$, where $h_i(x)$ represents the ith index we examine. We also say $h_0(x) =
$h(x)$. Defining $h_i(x)$ gives us the pre specified rules as to what index to check next—otherwise, we would
just be choosing randomly. Note that you can make up your own rules as to how $h_i(x)$ is defined, but we
need to make sure that the probe sequence is a permutation of $\{0...m-1\}$ to ensure that eventually all slots
are considered when inserting a new element as the table fills up. As we will see, there are different ways to
specify our probe sequence, some yielding better results than others.

This pseudocode below for search (which is very close to insert) illustrates how open addressing works. Note
that if an empty slot is found when searching for an element x, we can conclude that element doesn’t
exist (assuming no deletions), since otherwise it would’ve been placed into that slot during insertion. The
expected time for an unsuccessful search with this setup is \(O(\frac{1}{1-\alpha}) \), which is \(O(1) \) for values of \(\alpha \) not near 1 (Theorem 3). The expected number of probes for a successful search is harder to derive, and is given by \(O\left(\frac{1}{\alpha \ln \frac{1}{1-\alpha}}\right) \), which is also \(O(1) \) when \(\alpha \) is small (See CLRS pg 276 for derivation).

```
function search(x):
    index ← h(x)
    for i ← 1 to m do
        if T[index] = x then
            return true
        else if T[index] = ∅ then
            return false
        end if
        index ← h_i(index)
    end for
    return false
end function
```

probing techniques

There are variety of ways to define our probing function \(h_i(x) \). In **linear probing**, we define our \(h_i(x) = (h(x) + i) \mod m \). This has us taking equal sized steps through the table. While quick when the load factor is small (due to caching effects), as the load factor becomes large, insertion() and search() can end up traversing the entire table. This is due to a problem called **primary clustering**. This is just what it sounds like. Because the difference between consecutive probes is linear, elements tend to form clusters. This is because once just a few elements are placed next to each other in the table, it becomes increasingly likely that an element will hash to one of the indices occupied by an element in that cluster. Then, because linear probing is used, that element will be placed near the cluster once it finally finds an open address, effectively increasing the size of the cluster. This can be mitigated by other forms of probing such as **quadratic probing**: \((h_i(x) = (h(x) + i^2) \mod m) \). However, quadratic probing suffers from a milder yet similar problem called **secondary clustering**. An even more robust form of open addressing is **double hashing** (where we choose another hashing function \(h'(x) \) so \(h_i(x) = (h(x) + i * h'(x)) \mod m) \). This makes the probe sequence vary depending on the element being inserted instead of the initial probe index, effectively eliminating clustering.

Figure 3: Insertion of \(k = 14 \) with double hashing, with \(h(k) = k \mod 13 \) and \(h'(k) = 1 + (k \mod 11) \). Hash table is size 13 so \(m = 13 \). \(h(14) = 14 \mod 13 = 1 \) and \(h'(k) = 1 + (14 \mod 11) = 4 \). Hence procedure inserts 14 into slot 9 after probing slots 1 and 5 (recall \(i \) begins at 0).

If at this point you’re feeling a little lost as to how probing works, don’t worry — the formalization
makes it seem confusing but working out a few simple examples make linear and quadratic probing as well as double hashing much clearer. Remember, these probing techniques are no more than “rules”, which we are even free to make up ourselves, to specify the next index to check!

Discussion

Chaining vs. Open Addressing

Compare chaining and open addressing and discuss the pros and cons of each.

Solution

Chaining Pros:
- relatively simple to implement

Chaining Cons:
- can have long chains
- overhead from having to traverse pointers and maintain linked lists

Open Addressing Pros:
- takes up less space than chaining
- linear probing can take advantage of caching

Open Addressing Cons:
- clustering
- deletions can be tricky
- can have long probe sequences

Methods of chaining

What effects would it have if, instead of chaining with linked lists, you used balanced binary search trees? What about if you used hash tables (in a sort of recursive fashion)?

Solution

Implementing chaining with balanced binary search trees (so that the height of the BST is always \(\log n \)) would give order to the data at each index, allowing us to have worst case \(O(\log n) \) time lookups from our hash table as opposed to worst case \(O(n) \) time lookups if we used a linked list. However, we would then have increased overhead and memory usage from maintaining the balanced binary search tree. Furthermore, the worst case \(O(n) \) from the linked list is mitigated by keeping the table size large, which allows lookups to be expected constant time.

If you chain with hash tables, you could theoretically end up having a large recursive structure of hash tables (essentially like a linked list of hash tables), which would use a lot of memory and take a lot overhead to navigate, so this is not ideal. It would still be worst case \(O(n) \) time for lookups, but in practice would likely be slower due to the aforementioned overhead.

Methods of Open Addressing

Compare linear probing and double hashing. What problems do each suffer from? Which is better?
Solution

Linear probing suffers from primary clustering, so it is generally worse than double hashing. Something that linear probing has over double hashing is its ability to make use of data caching. It can do this because the distance between successive probes in a sequence is relatively small. Contrastingly, the distances between successive probes in double hashing are, on average, larger.

Designing Hash Codes

We saw that arrays require integer indices, and that most hash functions assume the universe of keys is the set of natural numbers. Hence if the keys are not natural numbers, we need to find a way to interpret them as such. How would you do so for the following keys?

(Note hashCodes are not the output of hash functions, but are used by the hash function to determine which bucket to hash your input to)

1. A boolean
2. A student name (“String”)
3. A point object storing the coordinates \(x, y\)
4. A complex object containing 100 fields and various public and private methods.

Solution

1. If true then 0 else 1.
2. Intuitively each character in the string has an ASCII integer value, so the most naive implementation is to simply take the sum of all the ASCII integer values. In practice, however, this does not create a very even distribution of keys, since as a simple example the strings “abc” and “cba” would produce the same hash codes under this scheme. This naturally leads to the idea that we also need to take the position of characters into account, and perform some weighted average over the characters of the string.

 In fact, since Java 1.2, java.lang.String implementation of computing hashcodes for strings is:

 \[h(s) = \sum_{i=0}^{n-1} s[i] \cdot 31^{n-1-i} \]

 where \(s\) is the input string and \(s[i]\) denotes the UTF-16 code of the i-th character of \(s\), and \(n\) is the length of \(s\).

3. Since \(x\) and \(y\) both contain information about the point object, it makes sense to incorporate both when computing the hashCode. If they are both doubles, we can convert them to longs using \texttt{doubleToLongBits(double value)} which return a representation of the double according to IEEE 754 floating point specifications. We then might simply add them together. In practice this does not produce a even distribution of hash codes so Josh Bloch’s Effective Java actually suggests calculating the hash code for each long \(f\) as \((\texttt{int}) f \ ^ \ (f \ >> 32)\) , where \(>>\) is the logical right shift operator and \(^\). The final hash code combines the two pieces as \(\text{hashCode} = 37 \ * \ \text{hashCode}(x) + \text{hashCode}(y)\). 37 is a rather arbitrary choice, though empirically this gives a good distribution of hashCodes, though the mathematics is beyond this discussion. Note that computing hash codes generally involves prime numbers.

4. As we quickly realize, computing hashCodes of an object involves using the information from a subset of its fields. If the object has a unique id, for example, we can just use the hashCode of the id for the entire object. Otherwise we can compute the hashCodes of every field used in the equals method, say with the methods suggested \texttt{here} and combine all the hashCodes as \(\text{result} = 37 \ * \ \text{result} + c\),
where result was initially set at 0 and c is the hashCode of the next field.

Alternatively, one might consider using the object’s memory address compute its hashCode.

There are, of course, many ways to implement hashCodes. This is just to provide a flavor for how it might be done, especially by java, in the real world.

Problems

Problem 1
You are given an array A containing distinct randomly assorted integers. Your goal is to find two elements in the array whose sum is k in O(n) expected time.

Solution
Begin by traversing A and putting all of the elements in a hash table. Then traverse A again, and for each element e, check and see if k − e exists in the hash table (and make sure k − e ≠ e). If it does, simply return e and k − e. If you reach the end of the array and haven’t found a pair, return that no such pair exists.

Running time Analysis: It takes expected O(n) time to insert all of the elements of A into the hash table, O(n) time to traverse A again, and expected O(1) time for each of the n elements (yielding expected O(n) time) to search for its complement. Therefore our algorithm still runs in expected O(n) time.

Problem 2
Assume we have a hash table T of size 10 that uses linear probing and has hash function h(x) = x mod 10. We insert 6 numbers into T and we get the below table:

<table>
<thead>
<tr>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
</tbody>
</table>

What is one possible order that we could have inserted these elements to get this result?

How many probes would be required for inserting 13 in the table?

Solution
One possible order that the numbers could have been inserted in is 46, 34, 42, 23, 52, 33. For a sequence to be valid:

- 46 must be inserted before 33
- 42, 34, and 23 must be inserted before 33 and 52

It would take 6 probes to insert 13 into the table, as we would first try to insert it in index 3, fail, and then traverse the cluster until we reach index 8, at which point it would be inserted after we realize that T[8] is empty. Note that this is a prime demonstration of primary clustering.
Problem 3
How would you detect a cycle in a linked list of distinct elements in expected $O(n)$ time?
Can you do it in constant space?

Solution
Our algorithm is as follows: Traverse the linked list, and keep a hash table of every element we’ve encountered. As we reach a new element in the linked list, check to see if it already exists in our hash table. If it does, we’ve found a cycle. If we reach the end of the linked list, then we know that no cycle exists.

Running time Analysis: It takes linear time to traverse the linked list and expected $O(1)$ time for each lookup and insertion in the hash table, of which there could be $2n$. Thus, the algorithm is expected $O(n)$ time.

To do it in constant space, we can begin with two pointers i and j and traverse the array. To traverse the array, we move the pointer j two spots along the linked list for every spot we move i. If there is a cycle, we know that j will eventually intersect with i (think about why this is!). If there is no cycle, then j will reach the end of the linked list and we are done.

Running time Analysis: We can say this algorithm is $O(n)$—try to figure out why this is and see if you can come up with a more specific bound in the case of a cycle!

Problem 4
Design an algorithm that determines if two lowercase words are anagrams of each other in expected $O(n)$ time. Note: a string A is an anagram of another string B if A is a permutation of B.
Can you do it in worst case $O(n)$ time?

Solution
Expected $O(n)$ time solution: First of all, if A and B aren’t the same length, they cannot be permutations. Otherwise, use two hash tables where the keys are letters and the values are the counts of those letters. Iterate through A incrementing the count of a letter in A’s hash table every time that letter is seen in A. Similarly, iterate through B incrementing the count of a letter in B’s hash table every time that letter is seen in B. This effectively builds a map that maps from every letter in A to the number of times that letter appears in A. It also does the same for B. Then, iterate through the letters in A’s map, and see if their counts are the same as their counts in B’s map. If this passes, we know A and B are the same. Note that we didn’t have to iterate through the letters of B because we know A and B are the same length.

Worst Case $O(n)$ time solution: Because there are only 26 lowercase letters in the alphabet, we can just use 2 arrays of size 26 each to store the counts. Then, it’s just the same algorithm as was used above except the keys above are just indices in the arrays and the values above are the values in the arrays at those indices. Because arrays support worst case $O(1)$ time insertions and lookups, and we iterate through each string once, this implementation runs in worst case $O(n)$ time.

Alternatively, you could just build the hash table/array the same way for string A, then traverse string B and for each letter, decrement the corresponding counter in A’s map/array. If a counter ever becomes -1 or the letter did not exist in A, return false. Otherwise, return true (assuming we already checked if A and B are the same length).

Auxiliary proofs (mathematical details for analysis of hashing)

Theorem 1. (Chaining successful lookup) In a hash table where collisions are resolved by separate chaining with newly colliding elements added to the front of the chain, the average number of elements examined in a successful search is $\Theta(1 + \alpha)$, where $\alpha = n/m$ is the load factor, n is the number of elements in the hash table, and m is the number of buckets.

Proof. Let k_1,k_2,\ldots,k_n be the elements of the hash table in order of insertion. Assume that for any particular search, any element is equally likely to be the element we are attempting to look up.
Let Z be the random variable representing the number of elements examined in a successful search. If we compute $E[Z]$, we are done.

Define an indicator random variable

$$X_{ij} = \begin{cases} 1 & \text{if } h(k_i) = h(k_j), \\ 0 & \text{otherwise.} \end{cases}$$

By *simple uniform hashing*, $\Pr[h(k_i) = h(k_j)] = \frac{1}{m}$, so

$$E[X_{ij}] = \Pr[X_{ij} = 1] = \Pr[h(k_i) = h(k_j)] = \frac{1}{m}.$$

Recall that colliding elements are added to the front of a chain. An element k_i only has $k_{i+1}, k_{i+2}, \ldots, k_n$ in front of it in the chain. Then the number of elements that are examined to find to find a particular k_i (including considering k_i itself) is simply

$$Z_{k_i} = 1 + \sum_{j=i+1}^{n} X_{ij}.$$

In expectation, we have

$$E[Z_{k_i}] = E\left[1 + \sum_{j=i+1}^{n} X_{ij}\right]$$

$$= 1 + \sum_{j=i+1}^{n} E[X_{ij}]$$

$$= 1 + \sum_{j=i+1}^{n} \frac{1}{m}$$

$$= 1 + \frac{n - i}{m}.$$

Since each k_i is equally likely to be searched for, we take the average over all possible Z_{k_i} to find $E[Z]$

$$E[Z] = \sum_{i=1}^{n} \frac{1}{n} E[Z_{k_i}]$$

$$= \sum_{i=1}^{n} \frac{1}{n} \left(1 + \frac{n - i}{m}\right)$$

$$= \sum_{i=1}^{n} \left(\frac{1}{n} + \frac{1}{m} - \frac{i}{nm}\right)$$

$$= 1 + \frac{n}{m} - \frac{1}{nm} \sum_{i=1}^{n} i$$

$$= 1 + \frac{n}{m} - \frac{1}{nm} \cdot \frac{n(n + 1)}{2}$$

$$= 1 + \frac{n}{m} - \frac{n + 1}{2m}$$

$$= 1 + \frac{n - 1}{2m}$$

$$= 1 + \frac{n}{2m} - \frac{1}{2m}$$

$$= 1 + \frac{n}{2m} - \frac{n}{2nm}$$

$$= 1 + \frac{n}{2} - \frac{n}{2n}.$$

$$= 1 + \frac{\alpha}{2} - \frac{\alpha}{2n}.$$
so $E[Z] = \Theta(1 + \alpha)$.

Theorem 2. (Chaining unsuccessful lookup) In a hash table where collisions are resolved by separate chaining with newly colliding elements added to the front of the chain, the average number of elements examined in an unsuccessful search is $\Theta(1 + \alpha)$, where $\alpha = n/m$ is the load factor, n is the number of elements in the hash table, and m is the number of buckets.

Proof. Under the assumption of simple uniform hashing, any key k not already stored in the table is equally likely to hash to any of the m slots. The expected time to search unsuccessfully for a key k is the expected time to search to the end of list. The expected length of the chain is exactly equal to the load factor α, so the total time required is $\Theta(1 + \alpha)$.

Theorem 3. (Open addressing unsuccessful lookup) In a hash table where collisions are resolved by open addressing, the average number of elements examined in an unsuccessful search is $O\left(\frac{1}{1-\alpha}\right)$.

Proof. We can show this by writing the expected number of probes as a recurrence on the two variables m and n:

$$E[T(m, n)] = 1 + \frac{n}{m} E[T(m - 1, n - 1)]$$

The $\frac{n}{m}$ term arises from the expected number of collisions.

We can prove using induction that $E[T(m, n)] \leq \frac{m}{m-n} = \frac{1}{1-\alpha}$.

Base Case: The base case arises at $T(m, 0)$, which means that the hash table is empty. Thus the first probe always finds an empty element, so $T(m, 0) = 1$.

Induction hypothesis: $E[T(m - 1, n - 1)] \leq \frac{m-1}{m-n}$.

Induction step:

$$E[T(m, n)] = 1 + \frac{n}{m} E[T(m - 1, n - 1)]$$

$$\leq 1 + \frac{n}{m} \cdot \frac{m - 1}{m - n}$$

$$< 1 + \frac{n}{m} \cdot \frac{m}{m - n}$$

$$= \frac{m - n + n}{m - n}$$

$$= \frac{m}{m - n} = \frac{1}{1 - \alpha}$$

$\therefore E[T(m, n)] \leq \frac{1}{1 - \alpha}$

If this didn’t make sense, don’t worry — check out an alternate proof on CLRS page 274.

For more discussion on the analysis of hashing, check out CLRS sections 11.2 and 11.4.
Introduction to the Trie Data Structure

Definition
A trie is an information retrieval data structure, that is useful for associating keys and values. In particular, tries can be used when keys are composed of a string of characters from a fixed alphabet \(\Sigma \).

History
Tries were first described by Ren de la Briandais in 1959. Edward Fredkin coined the term “trie” two years later but pronounced it as “tree”. Later authors pronounced it as “try” to distinguish “trees” from “tries”.

Suffix trees (see below), was first introduced by Weiner (1973). Donald Knuth subsequently characterized as “Algorithm of the Year 1973”. Suffix trees provide extremely fast implementation of several important string operations and have applications in compression, computational biology, and other diverse areas.

The Data Structure
A trie is a rooted tree used to store strings composed of characters from some alphabet \(\Sigma \). Each vertex in the tree is associated with some character in the alphabet, and a string is stored in the tree as a path from the root.

To put this in context with an example, let’s consider that we start with an empty trie, and that we add the string “Anne”.

Let us make a few observations about the example above. The root of the tree always corresponds to an empty character. Also, once the path \(\cdot \to a \to n \to n \to e \) has been constructed, a special node is constructed with character $ to denote the end of a valid word. Marking the end of a valid word, of course, is an implementation detail that’s up to you.

Let’s continue by adding “An” and “Bob” to our trie. The tree would be updated to appear as follows:
The above example demonstrates that we may store a prefix of another string already in the trie. Furthermore, it should be noted that each node may point to at most $\Sigma + 1$ children. As an implementation detail, the children of a node are typically stored within an array, since characters can be mapped to integer indices of the array. An index of the array can either be NULL (if such a child doesn’t exist), or can contain a pointer to the child node.

Supported Operations and Runtime

Insert:

When inserting a string, the insert operation iterates over the new string character by character, while also traversing the tree from the root. This process continues until the operation either reaches the end of the new string, or until it reaches a character for which a path in the tree doesn’t currently exist. At this point, the remaining characters are added to the tree, followed by a $\$ leaf node. The runtime is $O(m)$, where m denotes the length of the input string.

Find:

A string can be found by traversing the tree from the root. The runtime is $O(m)$.

Delete:

The delete operation is a little more tricky. As before, traverse the tree (from the root). If we find a $\$, indicating that this string is contained within our trie, the $\$ is removed. If any other strings are stored along this path, we are done. However, if no strings are stored along this path, we traverse towards the root, removing all characters that are not part of a string stored in the tree. The runtime for this operation is also $O(m)$.
Patricia Tries

Also known as compact tries, a patricia trie offers space usage improvements over simple tries (discussed above). As we’ve discussed, a trie’s space usage is $O(m)$ where m is the total size of all strings input. What property in a sequence of insertions fulfills this upper bound?

However, a simple motivation leads to an optimization. If a sequence of nodes all have one children, why have multiple nodes? In a compact trie, all such sequences are compacted into one node. A compact trie has $O(s)$ nodes, where s is the total number of strings inserted into the dictionary. This can be shown as follows:

We consider the number of nodes created upon the insertion of a string. As you insert, you walk down the existing structure of the trie until you “fall off”, meaning no prior insertion of a string has had the same prefix. At this point, a new node is created, and this node stores the entirety of the rest of the string to be inserted. Insertion finishes, and no further nodes are created.

A final optimization for space usage is as follows: instead of storing the actual strings at the nodes of our trie, we store every inserted string exactly once in an external dictionary (implementation of dictionary is up to you). With this external dictionary in place, each node can simply store the appropriate indices that allow us to lookup from the dictionary the character sequence the node represents. One indexing scheme (among many) might be (word id, begin index, end index). Thus, if “algorithms” is the first string we insert into our trie, we’ll have exactly 1 non-root node, with the data (1, 1, 10). The first 1 points to the first entry in our dictionary, i.e.: “algorithms”. The 1, 10 mean that the node stores the substring of “algorithms” from index 1 to index 10 (i.e. the whole string, in this case.)

Suffix Trees (A Special Type of Trie)

Definition

A suffix tree is a trie whose stored strings are all suffixes of one long input string.

Example

For the input string ENIAC, a suffix trie holds all the following suffixes of “ENIAC” (each associated with a start and end index in the original string):

- C (5, 5)
- AC (4, 5)
- IAC (3, 5)
- NIAC (2, 5)
- ENIAC (1, 5)

Suffix trees are often used to search for substrings in a given string.

Because any substring of ENIAC is guaranteed to start an index 1-5, all substrings must be a prefix of one of the above suffixes. Because the trie data structure supports searching for prefixes, a trie containing all of the above suffixes may be searched for any substring of ENIAC.

With m suffixes of length $O(m)$, a traditional suffix trie uses $O(m^2)$ space. A compact suffix trie uses just $O(m)$ space. Recall the nifty optimization technique discussed above involving an external dictionary and storing appropriate indices at nodes instead of the string themselves. Since suffixes have a natural notion of indices (see above), we can also effectively take advantage of this optimization technique for suffix trees.
Applications of Tries

At this point you’re probably bored out of your mind and wondering when tries will ever be useful. Tries are actually incredibly powerful and have many uses in the real world.

Instead of Hashmap, the basic trie data structure and be used in a TrieMap when keys are strings. This allows for quick prefix matching, which we saw was important in the LZW compression scheme.

Suffix Trees also have diverse applications. Primarily, it is used in string search, prefix matching, searching for longest repeated substring, finding longest common substring, or finding longest palindrome in a string. Perhaps somewhat surprisingly, suffix trees are heavily used in bioinformatics. Since DNA and protein sequences are really just strings of characters, suffix trees can be used to effectively search for specific patterns. Suffix trees are also used in data compression algorithms, chief among them LZSS, a variant of LZW that uses suffix trees.

Writing an Autocompletion Program

Formalizing the Problem

As you type characters into your smartphone, its keyboard program predicts the word you’re writing. It does this by keeping track of the characters you’ve already typed in the current word, and making a guess at what words are most likely to complete the sequence so far.

Let alphabet Σ be an ordered set of characters.
Let M be a vocabulary (a set of words) over Σ, with $M >> \Sigma$.
Let S be an incoming sequence (s_1, s_2, \ldots) of characters, with each $s_i \in \Sigma \cup \{\text{space}\}$ (Words can’t have a space character, but the sequence can).
Let the maximum number of words to present to the user at any time be k. This is usually bounded by screen size, and utility to the user. (If you’ve typed in nothing, do you want the whole English vocabulary given as a helpful suggestion?)

Goal: In a few steps, construct a data structure that permits the efficient and accurate prediction of words as sequence S is received. Once there are k or fewer possible word completions, keep track of the top k as each character s_i is received.

Step 1: Adding Size Information to Tries

Create a trie from the dictionary M. Modify the trie data structure such that nodes store an extra field $size$, which indicates the number of words that are children of this node. What do you do upon insertion? What do you do upon deletion?

Solution. Upon insertion, at each node traversed, add 1 to $size$. When nodes are created, initialize their $size$ to 1. Upon deletion, at each node traversed, subtract 1 from $size$.

Step 2: Extending to probabilities

The $size$ field for each node is helpful in determining when there are k or fewer predictions left. However, how do we know which of the k words are the most likely completions? This kind of information can be estimated by counting the number of times that a word occurs in the incoming text seen thus far. Therefore, we will add an additional field to each node of our trie, $frequency$, which stores the number of times that each word has been inserted into the trie.

Solution. To ensure validity of $size$: When inserting a word, first check membership of the word in the trie. If the word is already a member of the trie, don’t modify $size$ as it is inserted in the tree. To maintain frequency information, regardless of uniqueness of the word, add one to the $frequency$ value for just the leaf representing the word when you reach it in insertion.
Step 3: Putting it all together

We now have a trie that stores the words in our dictionary, as well as information at each node about the number of unique words “beneath” it. We also store the frequency that each unique word has occurred in the incoming text.

We now consider sequence S. Recall that this is the sequence of characters typed in by the user. Every time a character s_i is keyed in, we receive that character, and decide what to do. Design a function $\text{onChar}(c)$ that takes character c and returns a list L of potential autocompletions with the following properties:

1. The sequence is size k or smaller.
2. The sequence is ordered – that is, the first element is the most-likely word for autocompletion. Note that we’ll be estimating the “probability” as the frequency of each word divided by the total frequency of all possible words given the sequence so far.
3. $\text{onChar}(c)$ runs in $O(k \log(k))$ time.

Note that as we get more information (as we receive more characters in S), our set of candidate completions becomes more accurate. This is because we are effectively conditioning our probability calculations on the sequence so far, and more information \rightarrow better predictions.

Solution. Initialize current, a pointer to the root node of the trie. As each s_i is received, advance the pointer to the corresponding character in the trie. If s_i would advance the pointer to a position not on the trie (a search miss), reset it to the root node, and keep it there until a “space” character is received. (Also, potentially underline the partial word in red? If our vocabulary is correct, there are no real words starting with the sequence so far.)

Once the pointer has been advanced, check the value of size at that node. If it is greater than k, return. Otherwise, run DFS/BFS from the current node. (What if we wanted to return the possible words in lexicographical order instead of probabilistic order? Talk about how we could do this with BFS!) Put the leaves that the graph traversal algorithm in L, our list of potential completions. Sort them by decreasing frequency value, and return them to the user.

Once we’ve constructed L once, we don’t want to have to take $k \log k$ time to reconstruct it until we start a new word. Instead, once L is constructed, upon the next s_j, before advancing the pointer according to s_j, DFS down all other children of the current node, and remove all leaves from L. This takes $O(k)$ instead of $O(k \log k)$.

Upon any $s_i = \text{space}$, reset the pointer to the root, and empty L if it has any contents.

Problems

Problem 1

Given some arbitrarily long string, how can we find the longest repeated substring (LRS? What about if we want the longest that is repeated k times?

Note that a repeated substring is a substring that is repeated at least twice (overlap is ok). Some examples include:

GEEKSFOR_GEEKS : LRS = GEEKS
AAAA_AAAA_AAAA_AAAA (10 chars) : LRS = AAAA_AAAA_AAAA_AAAA (9 chars)

Solution

First we can build a suffix trie from the string. Next, we identify the deepest node with at least two descendants (indicating that this substring is repeated at least twice).

For finding the longest substring repeated at least k times, we can do the same thing except now just keep track of nodes with at least k descendants.
Problem 2

Given a set of N strings, how can we find the longest common prefix between any two strings? Analyze the running time of your algorithm and justify its correctness.

Solution

Initialize an integer \texttt{count} to 0 that will keep track of the longest prefix seen so far, and initialize a string to ϵ to keep track of the return value.

Add all of the strings into a trie, with one modification. For each string inserted, track the maximum depth into the trie before and new nodes have been initialized (meaning some other string has already been initialized along this path). If the depth is greater than \texttt{count}, update \texttt{count} and store the relevant substring.

Running time and correctness: This will take no more than (and hopefully much less than) $O(m)$ time, where m is the total length of the strings inserted. (The construction time of a trie.) Correctness follows from the lemma that two strings w_1 and w_2 share a common prefix iff the insertion of the second, w_2, involves walking a path from the root of the trie to a node v, such that the terminal node of w_1 is a descendant of v. This, in turn, follows from there being a unique path from the root of a trie given any string w, the length of the path being equal to the length of the string.