Example. Consider the following code fragment.

```plaintext
for (i = 0; i < n; i++)
    for (j = 0; j < i; j=j+10)
        print ("run time analysis")
```

Give a tight bound on the running time of this code fragment.

Solution. For each value of \(i\), the body of the inner loop executes \(i/10\) times. Thus the running time of the body of the outer loop is at most \(c(i/10)\), for some positive constant \(c\). Hence the total running time of the code fragment is given by

\[
\sum_{i=0}^{n-1} c \left\lfloor \frac{i}{10} \right\rfloor \leq \sum_{i=0}^{n-1} c \left(\frac{i}{10} + 1 \right) = \frac{c(n-1)n}{20} + cn \leq 2cn^2 = O(n^2)
\]

We will now show that \(\sum_{i=0}^{n-1} c \left\lfloor \frac{i}{10} \right\rfloor = \Omega(n^2)\). Note that

\[
\sum_{i=0}^{n-1} c \left\lfloor \frac{i}{10} \right\rfloor \geq \sum_{i=0}^{n-1} \frac{ci}{10} = c(n-1)n/20
\]

We want to find positive constants \(c'\) and \(n_0\), such that for all \(n \geq n_0\),

\[
\frac{c(n-1)n}{20} \geq c'n^2
\]

This is equivalent to showing that \(n(c - 20c') \geq c\). This is true when \(c' = c/40\) and \(n \geq 2\). Thus, the running time of the code fragment is \(\Omega(n^2)\).

Example. Consider the following code fragment.

```plaintext
i = n
while (i >= 10) do
    i = i/3
    for j = 1 to n do
        print ("Inner loop")
```

What is an upper-bound on the running time of this code fragment? Is there a matching lower-bound?
Solution. The running time of the body of the inner loop is $O(1)$. Thus the running time of the inner loop is at most $c_1 n$, for some positive constant c_1. The body of the outer loop takes at most $c_2 n$ time, for some positive constant c_2 (note that the statement $i = i/3$ takes $O(1)$ time). Suppose the algorithm goes through t iterations of the while loop. At the end of the last iteration of the while loop, the value of i is $n/3^t$. We know that the code fragment surely finishes when $n/3^t \leq 1$, solving which gives us $t \geq \log_3 n$. This means that the number of iterations of the while loop is at most $O(\log n)$. Thus the total running time is $O(n \log n)$.

We will now show that the running time is $\Omega(n \log n)$. We will lower-bound the number of iterations of the outer loop. Note that when the value of i is more than 10 (say, 3^3), the outer loop has not terminated. Solving $n/3^t \geq 3^3$, gives us that $\log_3 n - 3$ is a lower bound on the number of iterations of the outer loop. For each iteration of the outer loop, the inner loop runs n times. Thus the total running time is at least $cn(\log_3 n - 3)$, for some positive constant c. Note that $cn(\log_3 n - 3) \geq c'n \log n$, when $c' = c/2$ and $n \geq 3^6$. Thus the running time is $\Omega(n \log n)$.

Example. Consider the following code fragment.

```plaintext
for i = 0 to n do
  for j = n down to 0 do
    for k = 1 to j-i do
      print (k)
```

What is an upper-bound on the running time of this algorithm? What is the lower bound?

Solution. Note that for a fixed value of i and j, the innermost loop goes through $\max\{0, j - i\} \leq n$ times. Thus the running time of the above code fragment is $O(n^3)$.

To find the lower bound on the running time, consider the values of i, such that $0 \leq i \leq n/4$ and values of j, such that $3n/4 \leq j \leq n$. Note that for each of the $n^2/16$ different combinations of i and j, the innermost loop executes at least $n/2$ times. Thus the running time is at least

$$(n^2/16)(n/2) = \Omega(n^3)$$

Example. Consider the following code fragment.

```plaintext
for i = 1 to n do
  for j = 1 to i*i do
    for k = 1 to j do
      print (k)
```

Give a tight-bound on the running time of this algorithm? We will assume that n is a power of 2.

Solution. Note that the value of j in the second for-loop is upper bounded by n^2 and the value of k in the innermost loop is also bounded by n^2. Thus the outermost for-loop
iterates for \(n \) times, the second for-loop iterates for at most \(n^2 \) times, and the innermost loop iterates for at most \(n^2 \) times. Thus the running time of the code fragment is \(O(n^5) \).

We will now argue that the running time of the code fragment is \(\Omega(n^5) \). Consider the following code fragment.

for \(i = n/2 \) to \(n \) do
 for \(j = (n/4) \cdot (n/4) \) to \((n/2) \cdot (n/2) \) do
 for \(k = 1 \) to \((n/4) \cdot (n/4) \) do
 print (k)

Note that the values of \(i, j, k \) in the above code fragment form a subset of the corresponding values in the code fragment in question. Thus the running time of the new code fragment is a lower bound on the running time of the code fragment in question. Thus the running time of the code fragment in question is at least \(n/2 \cdot 3n^2/16 \cdot n^2/16 = \Omega(n^5) \).

Thus the running time of the code fragment in question is \(\Theta(n^5) \).

Example. Consider the following code fragment. We will assume that \(n \) is a power of 2.

for \((i = 1; i <= n; i = 2 \cdot i) \) do
 for \(j = 1 \) to \(i \) do
 print (j)

Give a tight-bound on the running time of this algorithm?

Solution. Observe that for \(0 \leq k \leq \lg n \), in the \(k^{th} \) iteration of the outer loop, the value of \(i = 2^k \). Thus the running time \(T(n) \) of the code fragment can be written as follows.

\[
T(n) = \sum_{k=0}^{\lg n} 2^k
\]

\[
= 2^{\lg n+1} - 1
\]

\[
= 2n - 1
\]

\[
= \Theta(n)
\]

Discussion: Consider a problem \(X \) with an algorithm \(A \).

- Algorithm \(A \) runs in time \(O(n^2) \). This means that the worst case asymptotic running time of algorithm \(A \) is upper-bounded by \(n^2 \). Is this bound tight? That is, is it possible that the run-time analysis of algorithm \(A \) is loose and that one can give a tighter upper-bound on the running time?

- Algorithm \(A \) runs in time \(\Theta(n^2) \). This means that the bound is tight, that is, a better (tighter) bound on the worst case asymptotic running time for algorithm \(A \) is not possible.

- Problem \(X \) takes time \(O(n^2) \). This means that there is an algorithm that solves problem \(X \) on *all* inputs in time \(O(n^2) \).
Problem \(X \) takes \(\Theta(n^{1.5}) \). This means that there is an algorithm to solve problem \(X \) that takes time \(O(n^{1.5}) \) and no algorithm can do better.

Consider the problem of computing \(2^n \) for any non-negative integer \(n \). Below are four similar looking algorithms to solve this problem.

```python
powerof2(n)
    if n = 0
        return 1
    else
        return 2 * powerof2(n-1)

powerof2(n)
    if n = 0
        return 1
    else
        return powerof2(n-1)+ powerof2(n-1)

powerof2(n)
    if n = 0
        return 1
    else
        tmp = powerof2(n-1)
        return tmp + tmp

powerof2(n)
    if n = 0
        return 1
    else
        tmp = powerof2(floor(n/2))
        if (n is even) then
            return tmp * tmp
        else
            return 2 * tmp * tmp
```

The recurrence for the first and the third method is \(T(n) = T(n - 1) + O(1) \). The recurrence for the second method is \(T(n) = 2T(n - 1) + O(1) \), and the recurrence for the last method is \(T(n) = T(n/2) + c \) (assuming that \(n \) is a power of 2). In all cases the base case is \(T(0) = 1 \).