3.2 Binary Search Trees

- BSTs
- iteration
- ordered operations
- deletion
Minimum and maximum

Minimum. Smallest key in BST.

Maximum. Largest key in BST.

Q. How to find the min / max?
Floor and ceiling

Floor. Largest key in BST \(\leq \) query key.

Ceiling. Smallest key in BST \(\geq \) query key.

Q. How to find the floor / ceiling?
Floor in a BST demo

Floor. Find the largest key in a BST that is $\leq k$?

floor of G
Floor in a BST demo

Floor. Find the largest key in a BST that is \(\leq k \)?
Floor in a BST demo

Floor. Find the largest key in a BST that is $\leq k$?

floor of G

E

compare G and E
(go right)

floor of G can't be in left subtree;
floor is either E or floor of G in right subtree
Floor in a BST demo

Floor. Find the largest key in a BST that is $\leq k$?

floor of G

E

all keys in right subtree of R are greater than G
⇒ compute floor of G in left subtree
Floor in a BST demo

Floor. Find the largest key in a BST that is $\leq k$?

floor of G

E

[Diagram of a binary search tree (BST) with nodes A, C, E, H, M, R, S, X. The node G is highlighted with a red arrow pointing to it, indicating the floor of G. The node H is connected to the left of G, and all keys in the right subtree of H are greater than G. A red arrow goes from H to G, indicating to compare G and H (go left). The diagram also notes that all keys in the right subtree of H are greater than G, leading to the conclusion that the floor of G should be computed in the left subtree.]
Floor. Find the largest key in a BST that is $\leq k$?

floor of G
Computing the floor

Floor. Largest key in BST \(\leq k \) ?

Case 1. [key in node \(x = k \)]
The floor of \(k \) is \(k \).

Case 2. [key in node \(x > k \)]
The floor of \(k \) is in the left subtree of \(x \).

Case 3. [key in node \(x < k \)]
The floor of \(k \) can't be in left subtree of \(x \): it is either in the right subtree of \(x \) or it is the key in node \(x \).
Computing the floor

public Key floor(Key key)
{ return floor(root, key); }

private Key floor(Node x, Key key)
{
 if (x == null) return null;
 int cmp = key.compareTo(x.key);

 if (cmp == 0) return x;

 if (cmp < 0) return floor(x.left, key);

 Key t = floor(x.right, key);
 if (t != null) return t;
 else return x.key;
}
Rank and select

Q. How to implement \texttt{rank()} and \texttt{select()} efficiently for BSTs?

A. In each node, store the number of nodes in its subtree.
BST implementation: subtree counts

```java
private class Node {
    private Key key;
    private Value val;
    private Node left;
    private Node right;
    private int count;
}
```

```java
public int size() {
    return size(root);
}
```

```java
private int size(Node x) {
    if (x == null) return 0;
    return x.count;
}
```

```java
private Node put(Node x, Key key, Value val) {
    if (x == null) return new Node(key, val, 1);
    int cmp = key.compareTo(x.key);
    if (cmp < 0) x.left = put(x.left, key, val);
    else if (cmp > 0) x.right = put(x.right, key, val);
    else if (cmp == 0) x.val = val;
    x.count = 1 + size(x.left) + size(x.right);
    return x;
}
```

number of nodes in subtree

ok to call when x is null

initialize subtree count to 1
Computing the rank

Rank. How many keys in BST < k?

Case 1. [$k < \text{key in node}$]
- Keys in left subtree? \textit{count}
- Key in node? 0
- Keys in right subtree? 0

Case 2. [$k > \text{key in node}$]
- Keys in left subtree? \textit{all}
- Key in node. 1
- Keys in right subtree? \textit{count}

Case 3. [$k = \text{key in node}$]
- Keys in left subtree? \textit{count}
- Key in node. 0
- Keys in right subtree? 0
Rank

Rank. How many keys in BST < \(k \) ?

Easy recursive algorithm (3 cases!)

```java
public int rank(Key key)
{
    return rank(key, root);
}

private int rank(Key key, Node x)
{
    if (x == null) return 0;
    int cmp = key.compareTo(x.key);
    if (cmp < 0) return rank(key, x.left);
    else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right);
    else if (cmp == 0) return size(x.left);
}
```
Selection in a BST demo

Select. Find the key in a BST of rank k.

$\text{rank}(S, 3)$

![BST Diagram with subtree counts]
Selection in a BST demo

Select. Find the key in a BST of rank \(k \).

\[
\text{rank}(S, 3)
\]

compare 3 and 6 (go left)

keys of rank 0–5 are in left subtree \(\Rightarrow \) find key of rank 3 in subtree rooted at E
Selection in a BST demo

Select. Find the key in a BST of rank k.

$\text{rank}(S, 3)$
$\text{rank}(E, 3)$

compare 3 and 2
(go right)

keys of rank 0–1 are in left subtree \Rightarrow
find key of rank 0 in subtree rooted at R
Selection in a BST demo

Select. Find the key in a BST of rank k.

- $\text{rank}(S, 3)$
- $\text{rank}(E, 3)$
- $\text{rank}(R, 0)$

keys of rank 0–1 are in left subtree ⇒ find key of rank 0 in subtree rooted at H
Selection in a BST demo

Select. Find the key in a BST of rank k.

- `rank(S, 3)`
- `rank(E, 3)`
- `rank(R, 0)`
- `rank(H, 0)`

0 keys in left subtree \Rightarrow
key of rank 0 in subtree rooted at H is H
BST: ordered symbol table operations summary

<table>
<thead>
<tr>
<th>Operation</th>
<th>Sequential Search</th>
<th>Binary Search</th>
<th>BST</th>
</tr>
</thead>
<tbody>
<tr>
<td>search</td>
<td>N</td>
<td>$\log N$</td>
<td>h</td>
</tr>
<tr>
<td>insert</td>
<td>N</td>
<td>N</td>
<td>h</td>
</tr>
<tr>
<td>min / max</td>
<td>N</td>
<td>1</td>
<td>h</td>
</tr>
<tr>
<td>floor / ceiling</td>
<td>N</td>
<td>$\log N$</td>
<td>h</td>
</tr>
<tr>
<td>rank</td>
<td>N</td>
<td>$\log N$</td>
<td>h</td>
</tr>
<tr>
<td>select</td>
<td>N</td>
<td>1</td>
<td>h</td>
</tr>
<tr>
<td>ordered iteration</td>
<td>$N \log N$</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

$h = \text{height of BST}$

(order proportional to $\log N$ if keys inserted in random order)

Order of growth of running time of ordered symbol table operations
ST implementations: summary

<table>
<thead>
<tr>
<th>implementation</th>
<th>guarantee</th>
<th>average case</th>
<th>ordered ops?</th>
<th>key interface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>search</td>
<td>insert</td>
<td>search hit</td>
<td>insert</td>
</tr>
<tr>
<td>sequential search (unordered list)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>binary search (ordered array)</td>
<td>$\log N$</td>
<td>N</td>
<td>$\log N$</td>
<td>N</td>
</tr>
<tr>
<td>BST</td>
<td>N</td>
<td>N</td>
<td>$\log N$</td>
<td>$\log N$</td>
</tr>
<tr>
<td>red–black BST</td>
<td>$\log N$</td>
<td>$\log N$</td>
<td>$\log N$</td>
<td>$\log N$</td>
</tr>
</tbody>
</table>

Next lecture. **Guarantee** logarithmic performance for all operations.
3.2 Binary Search Trees

- BSTs
- iteration
- ordered operations
- deletion
ST implementations: summary

<table>
<thead>
<tr>
<th>Implementation</th>
<th>Guarantee</th>
<th>Average Case</th>
<th>Ordered Ops?</th>
<th>Key Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>search</td>
<td>insert</td>
<td>delete</td>
<td>search hit</td>
</tr>
<tr>
<td>sequential search (unordered list)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>binary search (ordered array)</td>
<td>log N</td>
<td>N</td>
<td>N</td>
<td>log N</td>
</tr>
<tr>
<td>BST</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>log N</td>
</tr>
</tbody>
</table>

Next. Deletion in BSTs.
BST deletion: lazy approach

To remove a node with a given key:

- Set its value to null.
- Leave key in tree to guide search (but don’t consider it equal in search).

![Diagram of BST deletion]

Cost. $\sim 2 \ln N'$ per insert, search, and delete (if keys in random order), where N' is the number of key-value pairs ever inserted in the BST.

Unsatisfactory solution. Tombstone (memory) overload.
Deleting the minimum

To delete the minimum key:
- Go left until finding a node with a null left link.
- Replace that node by its right link.
- Update subtree counts.

```java
public void deleteMin()
{
    root = deleteMin(root);
}

private Node deleteMin(Node x)
{
    if (x.left == null) return x.right;
    x.left = deleteMin(x.left);
    x.count = 1 + size(x.left) + size(x.right);
    return x;
}
```
Hibbard deletion

To delete a node with key k: search for node τ containing key k.

Case 0. [0 children] Delete τ by setting parent link to null.
Hibbard deletion

To delete a node with key k: search for node t containing key k.

Case 1. [1 child] Delete t by replacing parent link.
Hibbard deletion

To delete a node with key k: search for node t containing key k.

Case 2. [2 children]

- Find successor x of t.
- Delete the minimum in t’s right subtree.
- Put x in t’s spot.

```plaintext
node to delete

search for key E

go right, then go left until reaching null left link

successor min(t.right)

deleteMin(t.right)

t.left

update links and node counts after recursive calls

x has no left child

but don't garbage collect x

still a BST
```
public void delete(Key key) {
 root = delete(root, key);
}

private Node delete(Node x, Key key) {
 if (x == null) return null;
 int cmp = key.compareTo(x.key);
 if (cmp < 0) x.left = delete(x.left, key);
 else if (cmp > 0) x.right = delete(x.right, key);
 else {
 if (x.right == null) return x.left;
 if (x.left == null) return x.right;
 Node t = x;
 x = min(t.right);
 x.right = deleteMin(t.right);
 x.left = t.left;
 }
 x.count = size(x.left) + size(x.right) + 1;
 return x;
}
Hibbard deletion: analysis

Unsatisfactory solution. Not symmetric.

Surprising consequence. Trees not random (!) $\Rightarrow \sqrt{N}$ per op.

Longstanding open problem. Simple and efficient delete for BSTs.
ST implementations: summary

<table>
<thead>
<tr>
<th>implementation</th>
<th>guarantee</th>
<th>average case</th>
<th>ordered ops?</th>
<th>key interface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>search</td>
<td>insert</td>
<td>delete</td>
<td>search</td>
</tr>
<tr>
<td>sequential search (unordered list)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>binary search (ordered array)</td>
<td>$\log N$</td>
<td>N</td>
<td>N</td>
<td>$\log N$</td>
</tr>
<tr>
<td>BST</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>$\log N$</td>
</tr>
</tbody>
</table>

Other operations also become \sqrt{N} if deletions allowed.

Next lecture. **Guarantee** logarithmic performance for all operations.