4.4 Shortest Paths

- APIs
- shortest-paths properties
- Dijkstra's algorithm
- edge-weighted DAGs
- negative weights
Shortest paths in an edge-weighted digraph

Given an edge-weighted digraph, find the shortest path from s to t.

edge-weighted digraph

- 4→5 0.35
- 5→4 0.35
- 4→7 0.37
- 5→7 0.28
- 7→5 0.28
- 5→1 0.32
- 0→4 0.38
- 0→2 0.26
- 7→3 0.39
- 1→3 0.29
- 2→7 0.34
- 6→2 0.40
- 3→6 0.52
- 6→0 0.58
- 6→4 0.93

shortest path from 0 to 6

- 0→2 0.26
- 2→7 0.34
- 7→3 0.39
- 3→6 0.52

$0.26 + 0.34 + 0.39 + 0.52 = 1.51$
Google maps
Shortest path applications

- PERT/CPM.
- Map routing.
- **Seam carving**.
- Texture mapping.
- Robot navigation.
- Typesetting in TeX.
- Urban traffic planning.
- Optimal pipelining of VLSI chip.
- Telemarketer operator scheduling.
- Routing of telecommunications messages.
- Network routing protocols (OSPF, BGP, RIP).
- Exploiting **arbitrage** opportunities in currency exchange.
- Optimal truck routing through given traffic congestion pattern.

Shortest path variants

Which vertices?

- **Single source:** from one vertex \(s \) to every other vertex.
- Single sink: from every vertex to one vertex \(t \).
- Source-sink: from one vertex \(s \) to another \(t \).
- All pairs: between all pairs of vertices.

Restrictions on edge weights?

- Nonnegative weights.
- Euclidean weights.
- Arbitrary weights.

Cycles?

- No directed cycles.
- No "negative cycles."

Simplifying assumption. Each vertex is reachable from \(s \).
4.4 Shortest Paths

- APIs
 - shortest-paths properties
 - Dijkstra’s algorithm
 - edge-weighted DAGs
 - negative weights
Weighted directed edge API

```
public class DirectedEdge {
    DirectedEdge(int v, int w, double weight) {
        weighted edge v→w
    }
    int from() {
        vertex v
    }
    int to() {
        vertex w
    }
    double weight() {
        weight of this edge
    }
    String toString() {
        string representation
    }
}
```

Idiom for processing an edge e: int v = e.from(), w = e.to();
Similar to Edge for undirected graphs, but a bit simpler.

```java
public class DirectedEdge
{
    private final int v, w;
    private final double weight;

    public DirectedEdge(int v, int w, double weight)
    {
        this.v = v;
        this.w = w;
        this.weight = weight;
    }

    public int from()
    { return v; }

    public int to()
    { return w; }

    public int weight()
    { return weight; }
}
```
Edge-weighted digraph API

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>public class EdgeWeightedDigraph</code></td>
<td></td>
</tr>
<tr>
<td><code>EdgeWeightedDigraph(int V)</code></td>
<td>edge-weighted digraph with V vertices</td>
</tr>
<tr>
<td><code>EdgeWeightedDigraph(In in)</code></td>
<td>edge-weighted digraph from input stream</td>
</tr>
<tr>
<td><code>void addEdge(DirectedEdge e)</code></td>
<td>add weighted directed edge e</td>
</tr>
<tr>
<td><code>Iterable<DirectedEdge> adj(int v)</code></td>
<td>edges adjacent from v</td>
</tr>
<tr>
<td><code>int V()</code></td>
<td>number of vertices</td>
</tr>
<tr>
<td><code>int E()</code></td>
<td>number of edges</td>
</tr>
<tr>
<td><code>Iterable<DirectedEdge> edges()</code></td>
<td>all edges</td>
</tr>
<tr>
<td><code>String toString()</code></td>
<td>string representation</td>
</tr>
</tbody>
</table>

Conventions. Allow self-loops and parallel edges.
Edge-weighted digraph: adjacency-lists representation
Edge-weighted digraph: adjacency-lists implementation in Java

Same as EdgeWeightedGraph except replace Graph with Digraph.

```java
public class EdgeWeightedDigraph {
    private final int V;
    private final Bag<DirectedEdge>[] adj;

    public EdgeWeightedDigraph(int V) {
        this.V = V;
        adj = (Bag<DirectedEdge>[]) new Bag[V];
        for (int v = 0; v < V; v++)
            adj[v] = new Bag<DirectedEdge>();
    }

    public void addEdge(DirectedEdge e) {
        int v = e.from();
        adj[v].add(e);
    }

    public Iterable<DirectedEdge> adj(int v) {
        return adj[v];
    }
}
```

add edge e = v→w to only v's adjacency list
Single-source shortest paths API

Goal. Find the shortest path from \(s \) to every other vertex.

<table>
<thead>
<tr>
<th>public class SP</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP(EdgeWeightedDigraph G, int s)</td>
</tr>
<tr>
<td>double distTo(int v)</td>
</tr>
<tr>
<td>Iterable <DirectedEdge> pathTo(int v)</td>
</tr>
<tr>
<td>boolean hasPathTo(int v)</td>
</tr>
</tbody>
</table>
4.4 **Shortest Paths**

- APIs
- *shortest-paths properties*
- Dijkstra's algorithm
- edge-weighted DAGs
- negative weights
Data structures for single-source shortest paths

Goal. Find the shortest path from s to every other vertex.

Observation. A shortest-paths tree (SPT) solution exists. Why?

Consequence. Can represent the SPT with two vertex-indexed arrays:

- $\text{distTo}[v]$ is length of shortest path from s to v.
- $\text{edgeTo}[v]$ is last edge on shortest path from s to v.
Data structures for single-source shortest paths

Goal. Find the shortest path from \(s \) to every other vertex.

Observation. A *shortest-paths tree* (SPT) solution exists. Why?

Consequence. Can represent the SPT with two vertex-indexed arrays:

- \(\text{distTo}[v] \) is length of shortest path from \(s \) to \(v \).
- \(\text{edgeTo}[v] \) is last edge on shortest path from \(s \) to \(v \).

```java
class DijkstraSPT {
    public double distTo(int v)
    {
        return distTo[v];
    }

    public Iterable<DirectedEdge> pathTo(int v)
    {
        Stack<DirectedEdge> path = new Stack<DirectedEdge>();
        for (DirectedEdge e = edgeTo[v]; e != null; e = edgeTo[e.from()])
            path.push(e);
        return path;
    }
}
```
Edge relaxation

Relax edge $e = v \rightarrow w$.

- $\text{distTo}[v]$ is length of shortest known path from s to v.
- $\text{distTo}[w]$ is length of shortest known path from s to w.
- $\text{edgeTo}[w]$ is last edge on shortest known path from s to w.
- If $e = v \rightarrow w$ gives shorter path to w through v, update both $\text{distTo}[w]$ and $\text{edgeTo}[w]$.

$v \rightarrow w$ successfully relaxes
Edge relaxation

Relax edge $e = v \rightarrow w$.

- $\text{distTo}[v]$ is length of shortest known path from s to v.
- $\text{distTo}[w]$ is length of shortest known path from s to w.
- $\text{edgeTo}[w]$ is last edge on shortest known path from s to w.
- If $e = v \rightarrow w$ gives shorter path to w through v, update both $\text{distTo}[w]$ and $\text{edgeTo}[w]$.

```java
private void relax(DirectedEdge e) {
    int v = e.from(), w = e.to();
    if (distTo[w] > distTo[v] + e.weight()) {
        distTo[w] = distTo[v] + e.weight();
        edgeTo[w] = e;
    }
}
```
Shortest-paths optimality conditions

Proposition. Let G be an edge-weighted digraph.
Then $\text{distTo}[]$ are the shortest path distances from s iff:

- $\text{distTo}[s] = 0$.
- For each vertex v, $\text{distTo}[v]$ is the length of some path from s to v.
- For each edge $e = v \rightarrow w$, $\text{distTo}[w] \leq \text{distTo}[v] + e.\text{weight}()$.

Pf. \Leftarrow [necessary]

- Suppose that $\text{distTo}[w] > \text{distTo}[v] + e.\text{weight}()$ for some edge $e = v \rightarrow w$.
- Then, e gives a path from s to w (through v) of length less than $\text{distTo}[w]$.
Proposition. Let G be an edge-weighted digraph. Then $\text{distTo}[]$ are the shortest path distances from s iff:

- $\text{distTo}[s] = 0$.
- For each vertex v, $\text{distTo}[v]$ is the length of some path from s to v.
- For each edge $e = v \rightarrow w$, $\text{distTo}[w] \leq \text{distTo}[v] + e.\text{weight}()$.

Pf. \Rightarrow [sufficient]

- Suppose that $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k = w$ is a shortest path from s to w.
- Then, $\text{distTo}[v_1] \leq \text{distTo}[v_0] + e_1.\text{weight}()$, $\text{distTo}[v_2] \leq \text{distTo}[v_1] + e_2.\text{weight}()$, ...
- $\text{distTo}[v_k] \leq \text{distTo}[v_{k-1}] + e_k.\text{weight}()$.
- Add inequalities; simplify; and substitute $\text{distTo}[v_0] = \text{distTo}[s] = 0$:

 $\text{distTo}[w] = \text{distTo}[v_k] \leq e_1.\text{weight}() + e_2.\text{weight}() + \ldots + e_k.\text{weight}()$

 - Thus, $\text{distTo}[w]$ is the weight of shortest path to w. ■
Generic shortest-paths algorithm

Generic algorithm (to compute a SPT from s)

- Initialize $\text{distTo}[s] = 0$ and $\text{distTo}[v] = \infty$ for all other vertices.
- Repeat until optimality conditions are satisfied:
 - Relax any edge.

Proposition. Generic algorithm computes SPT (if it exists) from s.

Pf sketch.

- $\text{distTo}[v]$ is always the length of a simple path from s to v.
- Each successful relaxation decreases $\text{distTo}[v]$ for some v.
- $\text{distTo}[v]$ can decrease at most a finite number of times. ■
Generic shortest-paths algorithm

Generic algorithm (to compute a SPT from s)

1. Initialize $\text{distTo}[s] = 0$ and $\text{distTo}[v] = \infty$ for all other vertices.
2. Repeat until optimality conditions are satisfied:
 - Relax any edge.

Efficient implementations. How to choose which edge to relax?

- **Ex 1.** Dijkstra's algorithm (nonnegative weights).
- **Ex 2.** Topological sort algorithm (no directed cycles).
- **Ex 3.** Bellman–Ford algorithm (no negative cycles).
4.4 **Shortest Paths**

- APIs
- shortest-paths properties
- *Dijkstra's algorithm*
- edge-weighted DAGs
- negative weights
“Do only what only you can do.”

“The use of COBOL cripples the mind; its teaching should, therefore, be regarded as a criminal offence.”

“It is practically impossible to teach good programming to students that have had a prior exposure to BASIC: as potential programmers they are mentally mutilated beyond hope of regeneration.”

“APL is a mistake, carried through to perfection. It is the language of the future for the programming techniques of the past: it creates a new generation of coding bums.”

http://catpad.net/michael/apl
"Object-oriented programming is an exceptionally bad idea which could only have originated in California."

-- Edsger Dijkstra
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from \(s \) (non-tree vertex with the lowest \(\text{distTo}[] \) value).
- Add vertex to tree and relax all edges adjacent from that vertex.

![Graph of Dijkstra's algorithm]

an edge-weighted digraph
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest $\text{distTo}[]$ value).
- Add vertex to tree and relax all edges adjacent from that vertex.

Choose source vertex 0

<table>
<thead>
<tr>
<th>v</th>
<th>$\text{distTo}[]$</th>
<th>$\text{edgeTo}[]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest $\text{distTo}[]$ value).
- Add vertex to tree and relax all edges adjacent from that vertex.

![Graph diagram]

relax all edges adjacent from 0

<table>
<thead>
<tr>
<th>v</th>
<th>$\text{distTo}[]$</th>
<th>$\text{edgeTo}[]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

27
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest $\text{distTo}[]$ value).
- Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

relax all edges adjacent from 0
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest $\text{distTo}[]$ value).
- Add vertex to tree and relax all edges adjacent from that vertex.
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest $\text{distTo}[]$ value).
- Add vertex to tree and relax all edges adjacent from that vertex.

choose vertex 1
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest $\text{distTo[]}[]$ value).
- Add vertex to tree and relax all edges adjacent from that vertex.

relax all edges adjacent from 1
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest $\text{distTo}[]$ value).
- Add vertex to tree and relax all edges adjacent from that vertex.

```
0
  ↓
  4
  ↓
  7
  ↓
  5
  ↓
  4
  ↓
  6
```

```
<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>17.0</td>
<td>1→2</td>
</tr>
<tr>
<td>3</td>
<td>20.0</td>
<td>1→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8.0 ✔</td>
<td>0→7</td>
</tr>
</tbody>
</table>
```

relax all edges adjacent from 1
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from \(s \) (non-tree vertex with the lowest \(\text{distTo}[] \) value).
- Add vertex to tree and relax all edges adjacent from that vertex.
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from \(s \) (non-tree vertex with the lowest \(\text{distTo}[] \) value).
- Add vertex to tree and relax all edges adjacent from that vertex.

```
choose vertex 7
```

```
\begin{tabular}{|c|c|c|}
\hline
v & distTo[] & edgeTo[] \\
\hline
0 & 0.0 & - \\
1 & 5.0 & 0→1 \\
2 & 17.0 & 1→2 \\
3 & 20.0 & 1→3 \\
4 & 9.0 & 0→4 \\
5 & & \\
6 & & \\
7 & 8.0 & 0→7 \\
\hline
\end{tabular}
```
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest $\text{distTo}[]$ value).
- Add vertex to tree and relax all edges adjacent from that vertex.

relax all edges adjacent from 7
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest $\text{distTo}[]$ value).
- Add vertex to tree and relax all edges adjacent from that vertex.

relax all edges adjacent from 7
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges adjacent from that vertex.
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest $\text{distTo}[]$ value).
- Add vertex to tree and relax all edges adjacent from that vertex.

```
<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>15.0</td>
<td>7→2</td>
</tr>
<tr>
<td>3</td>
<td>20.0</td>
<td>1→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>14.0</td>
<td>7→5</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>
```
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s
 (non-tree vertex with the lowest $\text{distTo}[]$ value).
- Add vertex to tree and relax all edges adjacent from that vertex.

![Dijkstra's algorithm diagram](image)

<table>
<thead>
<tr>
<th>v</th>
<th>$\text{distTo}[]$</th>
<th>$\text{edgeTo}[]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>15.0</td>
<td>7→2</td>
</tr>
<tr>
<td>3</td>
<td>20.0</td>
<td>1→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>14.0</td>
<td>7→5</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>

relax all edges adjacent from 4
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest $\text{distTo}[]$ value).
- Add vertex to tree and relax all edges adjacent from that vertex.

```
<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>15.0</td>
<td>7→2</td>
</tr>
<tr>
<td>3</td>
<td>20.0</td>
<td>1→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>29.0</td>
<td>4→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0 ✔</td>
<td>0→7</td>
</tr>
</tbody>
</table>
```

relax all edges adjacent from 4
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest $\text{distTo}[]$ value).
- Add vertex to tree and relax all edges adjacent from that vertex.
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges adjacent from that vertex.

![Graph Diagram]

<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>15.0</td>
<td>7→2</td>
</tr>
<tr>
<td>3</td>
<td>20.0</td>
<td>1→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>29.0</td>
<td>4→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>

select vertex 5
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from \(s \) (non-tree vertex with the lowest \(\text{distTo}[] \) value).
- Add vertex to tree and relax all edges adjacent from that vertex.

```
<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>15.0</td>
<td>7→2</td>
</tr>
<tr>
<td>3</td>
<td>20.0</td>
<td>1→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>29.0</td>
<td>4→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>
```

relax all edges adjacent from 5
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges adjacent from that vertex.

```
<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
<td>5→2</td>
</tr>
<tr>
<td>3</td>
<td>20.0</td>
<td>1→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>26.0</td>
<td>5→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>
```

relax all edges adjacent from 5
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest $\text{distTo}[]$ value).
- Add vertex to tree and relax all edges adjacent from that vertex.
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from \(s \) (non-tree vertex with the lowest \(\text{distTo}[] \) value).
- Add vertex to tree and relax all edges adjacent from that vertex.

select vertex 2
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest $\text{distTo}[]$ value).
- Add vertex to tree and relax all edges adjacent from that vertex.

relax all edges adjacent from 2
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges adjacent from that vertex.
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest $\text{distTo}[]$ value).
- Add vertex to tree and relax all edges adjacent from that vertex.
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from \(s \) (non-tree vertex with the lowest \(\text{distTo}[] \) value).
- Add vertex to tree and relax all edges adjacent from that vertex.

Graph:

- Vertex 0
 - Connects to vertices 1, 7, and 4
- Vertex 1
 - Connects to vertices 0 and 3
- Vertex 2
 - Connects to vertices 7 and 3
- Vertex 3
 - Connects to vertices 1 and 7
- Vertex 4
 - Connects to vertices 0 and 5
- Vertex 5
 - Connects to vertices 4, 2, and 6
- Vertex 6
 - Connects to vertices 5 and 3 (highlighted)

Table:

<table>
<thead>
<tr>
<th>(v)</th>
<th>(\text{distTo}[])</th>
<th>(\text{edgeTo}[])</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
<td>5→2</td>
</tr>
<tr>
<td>3</td>
<td>17.0</td>
<td>2→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>25.0</td>
<td>2→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>

Select vertex 3
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest $\text{distTo}[]$ value).
- Add vertex to tree and relax all edges adjacent from that vertex.

![Diagram of Dijkstra's algorithm demo]

<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
<td>5→2</td>
</tr>
<tr>
<td>3</td>
<td>17.0</td>
<td>2→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>25.0</td>
<td>2→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>

relax all edges adjacent from 3
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges adjacent from that vertex.

```
<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
<td>5→2</td>
</tr>
<tr>
<td>3</td>
<td>17.0</td>
<td>2→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>25.0</td>
<td>✔ 2→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>
```

relax all edges adjacent from 3
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from \(s \) (non-tree vertex with the lowest \(\text{distTo}[] \) value).
- Add vertex to tree and relax all edges adjacent from that vertex.
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest $\text{distTo}[]$ value).
- Add vertex to tree and relax all edges adjacent from that vertex.

select vertex 6
• Consider vertices in increasing order of distance from \(s \) (non-tree vertex with the lowest \(\text{distTo[]} \) value).
• Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

relax all edges adjacent from 6
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest $\text{distTo}[]$ value).
- Add vertex to tree and relax all edges adjacent from that vertex.
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges adjacent from that vertex.

shortest-paths tree from vertex s

<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
<td>5→2</td>
</tr>
<tr>
<td>3</td>
<td>17.0</td>
<td>2→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>25.0</td>
<td>2→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>
Dijkstra's algorithm visualization
Dijkstra's algorithm visualization
Dijkstra's algorithm: correctness proof 1

Proposition. Dijkstra's algorithm computes a SPT in any edge-weighted digraph with nonnegative weights.

Pf.

- Each edge \(e = v \rightarrow w \) is relaxed exactly once (when vertex \(v \) is relaxed), leaving \(\text{distTo}[w] \leq \text{distTo}[v] + e.\text{weight}() \).
- Inequality holds until algorithm terminates because:
 - \(\text{distTo}[w] \) cannot increase \(\leftarrow \) \(\text{distTo[]} \) values are monotone decreasing
 - \(\text{distTo}[v] \) will not change \(\leftarrow \) we choose lowest \(\text{distTo[]} \) value at each step (and edge weights are nonnegative)

 ![Diagram](image.png)

 if \(u \) has not yet been relaxed,
 then \(\text{distTo}[u] \geq \text{distTo}[v] \)

- Thus, upon termination, shortest-paths optimality conditions hold. ■
Dijkstra's algorithm: Java implementation

```java
public class DijkstraSP {
    private DirectedEdge[] edgeTo;
    private double[] distTo;
    private IndexMinPQ<Double> pq;

    public DijkstraSP(EdgeWeightedDigraph G, int s) {
        edgeTo = new DirectedEdge[G.V()];
        distTo = new double[G.V()];
        pq = new IndexMinPQ<Double>(G.V());

        for (int v = 0; v < G.V(); v++)
            distTo[v] = Double.POSITIVE_INFINITY;
        distTo[s] = 0.0;

        pq.insert(s, 0.0);
        while (!pq.isEmpty()) {
            int v = pq.delMin();
            for (DirectedEdge e : G.adj(v))
                relax(e);
        }
    }
}
```

relax vertices in order of distance from s
Dijkstra's algorithm: Java implementation

```java
private void relax(DirectedEdge e) {
    int v = e.from(), w = e.to();
    if (distTo[w] > distTo[v] + e.weight()) {
        distTo[w] = distTo[v] + e.weight();
        edgeTo[w] = e;
        if (pq.contains(w)) pq.decreaseKey(w, distTo[w]);
        else pq.insert(w, distTo[w]);
    }
}
```

update PQ
Dijkstra's algorithm: which priority queue?

Depends on PQ implementation: V insert, V delete-min, E decrease-key.

<table>
<thead>
<tr>
<th>PQ implementation</th>
<th>insert</th>
<th>delete-min</th>
<th>decrease-key</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>unordered array</td>
<td>1</td>
<td>V</td>
<td>1</td>
<td>V^2</td>
</tr>
<tr>
<td>binary heap</td>
<td>$\log V$</td>
<td>$\log V$</td>
<td>$\log V$</td>
<td>$E \log V$</td>
</tr>
<tr>
<td>d-way heap</td>
<td>$\log_d V$</td>
<td>$d \log_d V$</td>
<td>$\log_d V$</td>
<td>$E \log_{E/V} V$</td>
</tr>
<tr>
<td>Fibonacci heap</td>
<td>$1 \dagger$</td>
<td>$\log V \dagger$</td>
<td>$1 \dagger$</td>
<td>$E + V \log V$</td>
</tr>
</tbody>
</table>

\dagger amortized

Bottom line.

- Array implementation optimal for dense graphs.
- Binary heap much faster for sparse graphs.
- 4-way heap worth the trouble in performance-critical situations.
- Fibonacci heap best in theory, but not worth implementing.
Computing a spanning tree in a graph

Dijkstra's algorithm seem familiar?
• Prim's algorithm is essentially the same algorithm.
• Both are in a family of algorithms that compute a spanning tree.

Main distinction: rule used to choose next vertex for the tree.
• Prim: Closest vertex to the tree (via an undirected edge).
• Dijkstra: Closest vertex to the source (via a directed path).

Note: DFS and BFS are also in this family of algorithms.
4.4 **Shortest Paths**

- APIs
- shortest-paths properties
- Dijkstra's algorithm
- edge-weighted DAGs
- negative weights
Acyclic edge-weighted digraphs

Q. Suppose that an edge-weighted digraph has no directed cycles. Is it easier to find shortest paths than in a general digraph?

A. Yes!
Acyclic shortest paths demo

- Consider vertices in topological order.
- Relax all edges adjacent from that vertex.

![An edge-weighted DAG](image)
Acyclic shortest paths demo

- Consider vertices in topological order.
- Relax all edges adjacent from that vertex.

```
topological order: 0 1 4 7 5 2 3 6
```
Acyclic shortest paths demo

- Consider vertices in topological order.
- Relax all edges adjacent from that vertex.

choose vertex 0
Acyclic shortest paths demo

- Consider vertices in topological order.
- Relax all edges adjacent from that vertex.

relax all edges adjacent from 0

\[
\begin{array}{cccccccc}
0 & 1 & 4 & 7 & 5 & 2 & 3 & 6 \\
0 & 0 & 0.0 & - & - & - & - & - \\
\end{array}
\]
Consider vertices in topological order.
Relax all edges adjacent from that vertex.
Acyclic shortest paths demo

- Consider vertices in topological order.
- Relax all edges adjacent from that vertex.
Acyclic shortest paths demo

- Consider vertices in topological order.
- Relax all edges adjacent from that vertex.

Choose vertex 1

\[
\begin{array}{c|c|c}
\text{v} & \text{distTo[]} & \text{edgeTo[]} \\
0 & 0.0 & - \\
1 & 5.0 & 0→1 \\
2 & & \\
3 & & \\
4 & 9.0 & 0→4 \\
5 & & \\
6 & & \\
7 & 8.0 & 0→7 \\
\end{array}
\]
Acyclic shortest paths demo

- Consider vertices in topological order.
- Relax all edges adjacent from that vertex.

relax all edges adjacent from 1
Acyclic shortest paths demo

• Consider vertices in topological order.
• Relax all edges adjacent from that vertex.

relax all edges adjacent from 1
Acyclic shortest paths demo

- Consider vertices in topological order.
- Relax all edges adjacent from that vertex.
Acyclic shortest paths demo

- Consider vertices in topological order.
- Relax all edges adjacent from that vertex.

Select vertex 4
(Dijkstra would have selected vertex 7)
• Consider vertices in topological order.
• Relax all edges adjacent from that vertex.

relax all edges adjacent from 4
Acyclic shortest paths demo

- Consider vertices in topological order.
- Relax all edges adjacent from that vertex.

relax all edges adjacent from 4
Acyclic shortest paths demo

- Consider vertices in topological order.
- Relax all edges adjacent from that vertex.
Acyclic shortest paths demo

- Consider vertices in topological order.
- Relax all edges adjacent from that vertex.

Choose vertex 7
Acyclic shortest paths demo

- Consider vertices in topological order.
- Relax all edges adjacent from that vertex.

<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>17.0</td>
<td>1→2</td>
</tr>
<tr>
<td>3</td>
<td>20.0</td>
<td>1→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>29.0</td>
<td>4→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>

relax all edges adjacent from 7
Acyclic shortest paths demo

- Consider vertices in topological order.
- Relax all edges adjacent from that vertex.

relax all edges adjacent from 7
• Consider vertices in topological order.
• Relax all edges adjacent from that vertex.
Acyclic shortest paths demo

- Consider vertices in topological order.
- Relax all edges adjacent from that vertex.

```plaintext
select vertex 5
```

```
0 1 4 7 5 2 3 6

<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>15.0</td>
<td>7→2</td>
</tr>
<tr>
<td>3</td>
<td>20.0</td>
<td>1→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>29.0</td>
<td>4→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>
```
Acyclic shortest paths demo

- Consider vertices in topological order.
- Relax all edges adjacent from that vertex.

```
<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>15.0</td>
<td>7→2</td>
</tr>
<tr>
<td>3</td>
<td>20.0</td>
<td>1→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>29.0</td>
<td>4→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>
```

relax all edges adjacent from 5
Acyclic shortest paths demo

- Consider vertices in topological order.
- Relax all edges adjacent from that vertex.
• Consider vertices in topological order.
• Relax all edges adjacent from that vertex.
Acyclic shortest paths demo

- Consider vertices in topological order.
- Relax all edges adjacent from that vertex.

```
select vertex 2

0 1 4 7 5 2 3 6

<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
<td>5→2</td>
</tr>
<tr>
<td>3</td>
<td>20.0</td>
<td>1→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>26.0</td>
<td>5→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>
```
• Consider vertices in topological order.
• Relax all edges adjacent from that vertex.

relax all edges adjacent from 2
• Consider vertices in topological order.
• Relax all edges adjacent from that vertex.
Acyclic shortest paths demo

- Consider vertices in topological order.
- Relax all edges adjacent from that vertex.

<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
<td>5→2</td>
</tr>
<tr>
<td>3</td>
<td>17.0</td>
<td>2→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>25.0</td>
<td>2→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>
Acyclic shortest paths demo

- Consider vertices in topological order.
- Relax all edges adjacent from that vertex.

```
0  1  4  7  5  2  3  6

<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
<td>5→2</td>
</tr>
<tr>
<td>3</td>
<td>17.0</td>
<td>2→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>25.0</td>
<td>2→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>
```

select vertex 3
Acyclic shortest paths demo

- Consider vertices in topological order.
- Relax all edges adjacent from that vertex.

![Diagram of a directed graph with vertices labeled 0 to 7 and edges pointing from lower to higher numbers, with distances and edges to adjacent vertices listed in a table. The vertex 3 is highlighted, and all edges adjacent from it are relaxed.](image_url)
Acyclic shortest paths demo

- Consider vertices in topological order.
- Relax all edges adjacent from that vertex.

```
<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
<td>5→2</td>
</tr>
<tr>
<td>3</td>
<td>17.0</td>
<td>2→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>25.0</td>
<td>2→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>
```

relax all edges adjacent from 3
Acyclic shortest paths demo

- Consider vertices in topological order.
- Relax all edges adjacent from that vertex.

![Graph with vertices and edges labeled with distances and edge transitions]

Table

<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
<td>5→2</td>
</tr>
<tr>
<td>3</td>
<td>17.0</td>
<td>2→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>25.0</td>
<td>2→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>
Acyclic shortest paths demo

- Consider vertices in topological order.
- Relax all edges adjacent from that vertex.

```
select vertex 6
```

```
<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
<td>5→2</td>
</tr>
<tr>
<td>3</td>
<td>17.0</td>
<td>2→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>25.0</td>
<td>2→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>
```
• Consider vertices in topological order.
• Relax all edges adjacent from that vertex.

relax all edges adjacent from 6
Acyclic shortest paths demo

- Consider vertices in topological order.
- Relax all edges adjacent from that vertex.
Acyclic shortest paths demo

- Consider vertices in topological order.
- Relax all edges adjacent from that vertex.

```
shortest-paths tree from vertex s
```

```
<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
<td>5→2</td>
</tr>
<tr>
<td>3</td>
<td>17.0</td>
<td>2→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>25.0</td>
<td>2→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>
```
Proposition. Topological sort algorithm computes the SPT in any edge-weighted DAG.

Pf.
- Each edge $e = v \rightarrow w$ is relaxed exactly once (when vertex v is relaxed), leaving $\text{distTo}[w] \leq \text{distTo}[v] + e.\text{weight}()$.
- Inequality holds until algorithm terminates because:
 - $\text{distTo}[w]$ cannot increase
 - $\text{distTo}[v]$ will not change

 when relaxing v

 \[u \rightarrow v \]

 u already relaxed

- Thus, upon termination, shortest-paths optimality conditions hold. ✷
public class AcyclicSP
{
 private DirectedEdge[] edgeTo;
 private double[] distTo;

 public AcyclicSP(EdgeWeightedDigraph G, int s)
 {
 edgeTo = new DirectedEdge[G.V()];
 distTo = new double[G.V()];

 for (int v = 0; v < G.V(); v++)
 distTo[v] = Double.POSITIVE_INFINITY;
 distTo[s] = 0.0;

 Topological topological = new Topological(G);
 for (int v : topological.order())
 for (DirectedEdge e : G.adj(v))
 relax(e);
 }
}
Content-aware resizing

Seam carving. [Avidan and Shamir] Resize an image without distortion for display on cell phones and web browsers.

http://www.youtube.com/watch?v=vlFCV2spKtg
Content-aware resizing

Seam carving. [Avidan and Shamir] Resize an image without distortion for display on cell phones and web browsers.

In the wild. Photoshop, Imagemagick, GIMP, ...
Content-aware resizing

To find vertical seam:

- Grid DAG: vertex = pixel; edge = from pixel to 3 downward neighbors.
- Weight of pixel = "energy function" of 8 neighboring pixels.
- Seam = shortest path (sum of vertex weights) from top to bottom.
Content-aware resizing

To find vertical seam:

- Grid DAG: vertex = pixel; edge = from pixel to 3 downward neighbors.
- Weight of pixel = "energy function" of 8 neighboring pixels.
- Seam = shortest path (sum of vertex weights) from top to bottom.
Content-aware resizing

To remove vertical seam:

- Delete pixels on seam (one in each row).
Content-aware resizing

To remove vertical seam:
 • Delete pixels on seam (one in each row).
Longest paths in edge-weighted DAGs

Formulate as a shortest paths problem in edge-weighted DAGs.

- Negate all weights.
- Find shortest paths.
- Negate weights in result.

equivalent: reverse direction of inequality in relax()
Parallel job scheduling. Given a set of jobs with durations and precedence constraints, schedule the jobs (by finding a start time for each) so as to achieve the minimum completion time, while respecting the constraints.

<table>
<thead>
<tr>
<th>job</th>
<th>duration</th>
<th>must complete before</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>41.0</td>
<td>1 7 9</td>
</tr>
<tr>
<td>1</td>
<td>51.0</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>50.0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>36.0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>38.0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>45.0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>21.0</td>
<td>3 8</td>
</tr>
<tr>
<td>7</td>
<td>32.0</td>
<td>3 8</td>
</tr>
<tr>
<td>8</td>
<td>32.0</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>29.0</td>
<td>4 6</td>
</tr>
</tbody>
</table>

Parallel job scheduling solution
Critical path method

CPM. To solve a parallel job-scheduling problem, create edge-weighted DAG:

- Source and sink vertices.
- Two vertices (begin and end) for each job.
- Three edges for each job.
 - begin to end (weighted by duration)
 - source to begin (0 weight)
 - end to sink (0 weight)
- One edge for each precedence constraint (0 weight).
Critical path method

CPM. Use *longest path* from the source to schedule each job.
4.4 Shortest Paths

- APIs
- shortest-paths properties
- Dijkstra’s algorithm
- edge-weighted DAGs
- negative weights
Shortest paths with negative weights: failed attempts

Dijkstra. Doesn’t work with negative edge weights.

Dijkstra selects the vertices in the order 0, 3, 2, 1
But shortest path from 0 to 3 is 0→1→2→3.

Re-weighting. Add a constant to every edge weight doesn’t work.

Adding 8 to each edge weight changes the shortest path from 0→1→2→3 to 0→3.

Conclusion. Need a different algorithm.
A negative cycle is a directed cycle whose sum of edge weights is negative.

Proposition. A SPT exists iff no negative cycles.
Bellman–Ford algorithm

Initialize $\text{distTo}[s] = 0$ and $\text{distTo}[v] = \infty$ for all other vertices.

Repeat V times:

- Relax each edge.

```java
for (int i = 0; i < G.V(); i++)
    for (int v = 0; v < G.V(); v++)
        for (DirectedEdge e : G.adj(v))
            relax(e);
```

pass i (relax each edge)
Repeat V times: relax all E edges.

Bellman–Ford algorithm demo.

An edge-weighted digraph.
Bellman–Ford algorithm demo

Repeat V times: relax all E edges.

- **initialize**

<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bellman–Ford algorithm demo

Repeat V times: relax all E edges.
Bellman–Ford algorithm demo

Repeat V times: relax all E edges.

pass 0

$0 \rightarrow 1 \ 0 \rightarrow 4 \ 0 \rightarrow 7 \ 1 \rightarrow 2 \ 1 \rightarrow 3 \ 1 \rightarrow 7 \ 2 \rightarrow 3 \ 2 \rightarrow 6 \ 3 \rightarrow 6 \ 4 \rightarrow 5 \ 4 \rightarrow 6 \ 4 \rightarrow 7 \ 5 \rightarrow 2 \ 5 \rightarrow 6 \ 7 \rightarrow 5 \ 7 \rightarrow 2$
Bellman–Ford algorithm demo

Repeat V times: relax all E edges.

pass 0

0→1 0→4 0→7 1→2 1→3 1→7 2→3 2→6 3→6 4→5 4→6 4→7 5→2 5→6 7→5 7→2
Bellman–Ford algorithm demo

Repeat V times: relax all E edges.

\[
\begin{array}{c|c|c}
\text{v} & \text{distTo[]} & \text{edgeTo[]} \\
0 & 0.0 & - \\
1 & 5.0 & 0\rightarrow1 \\
2 & & \\
3 & & \\
4 & 9.0 & 0\rightarrow4 \\
5 & & \\
6 & & \\
7 & & \\
\end{array}
\]
Bellman–Ford algorithm demo

Repeat V times: relax all E edges.
Bellman–Ford algorithm demo

Repeat V times: relax all E edges.

\[
\begin{array}{c|c|c}
\text{v} & \text{distTo[]} & \text{edgeTo[]} \\
0 & 0.0 & - \\
1 & 5.0 & 0\rightarrow 1 \\
2 & & \\
3 & & \\
4 & 9.0 & 0\rightarrow 4 \\
5 & & \\
6 & & \\
7 & 8.0 & 0\rightarrow 7 \\
\end{array}
\]

\[
\begin{array}{c}
\text{pass 0} \\
0\rightarrow 1 & 0\rightarrow 4 & 0\rightarrow 7 & 1\rightarrow 2 & 1\rightarrow 3 & 1\rightarrow 7 & 2\rightarrow 3 & 2\rightarrow 6 & 3\rightarrow 6 & 4\rightarrow 5 & 4\rightarrow 6 & 4\rightarrow 7 & 5\rightarrow 2 & 5\rightarrow 6 & 7\rightarrow 5 & 7\rightarrow 2 \\
\end{array}
\]
Bellman–Ford algorithm demo

Repeat V times: relax all E edges.
Bellman–Ford algorithm demo

Repeat V times: relax all E edges.
Bellman–Ford algorithm demo

Repeat V times: relax all E edges.
Bellman–Ford algorithm demo

Repeat V times: relax all E edges.

pass 0

0→1 0→4 0→7 1→2 1→3 1→7 2→3 2→6 3→6 4→5 4→6 4→7 5→2 5→6 7→5 7→2
Bellman–Ford algorithm demo

Repeat V times: relax all E edges.
Bellman–Ford algorithm demo

Repeat V times: relax all E edges.
Bellman–Ford algorithm demo

Repeat V times: relax all E edges.

```
<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>17.0</td>
<td>1→2</td>
</tr>
<tr>
<td>3</td>
<td>20.0</td>
<td>1→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>

pass 0

0→1 0→4 0→7 1→2 1→3 1→7 2→3 2→6 3→6 4→5 4→6 4→7 5→2 5→6 7→5 7→2
```
Bellman–Ford algorithm demo

Repeat V times: relax all E edges.

pass 0

0→1 0→4 0→7 1→2 1→3 1→7 2→3 2→6 3→6 4→5 4→6 4→7 5→2 5→6 7→5 7→2
Bellman–Ford algorithm demo

Repeat V times: relax all E edges.

Pass 0:

\[
\begin{align*}
0 &\rightarrow 1 \rightarrow 7 & 1 \rightarrow 2 & 1 \rightarrow 3 & 1 \rightarrow 7 & 2 \rightarrow 3 & 2 \rightarrow 6 & 3 \rightarrow 6 & 4 \rightarrow 5 & 4 \rightarrow 6 & 4 \rightarrow 7 & 5 \rightarrow 2 & 5 \rightarrow 6 & 7 \rightarrow 5 & 7 \rightarrow 2
\end{align*}
\]
Bellman–Ford algorithm demo

Repeat V times: relax all E edges.

pass 0

0→1 0→4 0→7 1→2 1→3 1→7 2→3 2→6 3→6 4→5 4→6 4→7 5→2 5→6 7→5 7→2
Bellman–Ford algorithm demo

Repeat V times: relax all E edges.
Bellman–Ford algorithm demo

Repeat V times: relax all E edges.
Bellman–Ford algorithm demo

Repeat V times: relax all E edges.

Pass 0:

0 → 1 0 → 4 0 → 7 1 → 2 1 → 3 1 → 7 2 → 3 2 → 6 3 → 6 4 → 5 4 → 6 4 → 7 5 → 2 5 → 6 7 → 5 7 → 2
Bellman–Ford algorithm demo

Repeat V times: relax all E edges.
Bellman–Ford algorithm demo

Repeat V times: relax all E edges.

```
pass 0

0→1 0→4 0→7 1→2 1→3 1→7 2→3 2→6 3→6 4→5 4→6 4→7 5→2 5→6 7→5 7→2
```
Bellman–Ford algorithm demo

Repeat V times: relax all E edges.

```
<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
<td>5→2</td>
</tr>
<tr>
<td>3</td>
<td>20.0</td>
<td>1→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>28.0</td>
<td>2→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>
```

pass 0

0→1 0→4 0→7 1→2 1→3 1→7 2→3 2→6 3→6 4→5 4→6 4→7 5→2 5→6 7→5 7→2
Bellman–Ford algorithm demo

Repeat V times: relax all E edges.
Bellman–Ford algorithm demo

Repeat V times: relax all E edges.

<table>
<thead>
<tr>
<th>pass 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0→1 0→4 0→7 1→2 1→3 1→7 2→3 2→6 3→6 4→5 4→6 4→7 5→2 5→6 7→5 7→2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
<td>5→2</td>
</tr>
<tr>
<td>3</td>
<td>20.0</td>
<td>1→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>26.0</td>
<td>5→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>
Bellman–Ford algorithm demo

Repeat V times: relax all E edges.

pass 0

0→1 0→4 0→7 1→2 1→3 1→7 2→3 2→6 3→6 4→5 4→6 4→7 5→2 5→6 7→5 7→2

<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
<td>5→2</td>
</tr>
<tr>
<td>3</td>
<td>20.0</td>
<td>1→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>26.0</td>
<td>5→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>
Bellman–Ford algorithm demo

Repeat V times: relax all E edges.

\[
\begin{array}{cccc}
 v & \text{distTo[]} & \text{edgeTo[]} \\
 0 & 0.0 & - \\
 1 & 5.0 & 0\rightarrow1 \\
 2 & 14.0 & 5\rightarrow2 \\
 3 & 20.0 & 1\rightarrow3 \\
 4 & 9.0 & 0\rightarrow4 \\
 5 & 13.0 & 4\rightarrow5 \\
 6 & 26.0 & 5\rightarrow6 \\
 7 & 8.0 & 0\rightarrow7 \\
\end{array}
\]

pass 1

\[0\rightarrow1 \ 0\rightarrow4 \ 0\rightarrow7 \ 1\rightarrow2 \ 1\rightarrow3 \ 1\rightarrow7 \ 2\rightarrow3 \ 2\rightarrow6 \ 3\rightarrow6 \ 4\rightarrow5 \ 4\rightarrow6 \ 4\rightarrow7 \ 5\rightarrow2 \ 5\rightarrow6 \ 7\rightarrow5 \ 7\rightarrow2\]
Bellman–Ford algorithm demo

Repeat V times: relax all E edges.

<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
<td>5→2</td>
</tr>
<tr>
<td>3</td>
<td>20.0</td>
<td>1→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>26.0</td>
<td>5→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>

pass 1

$0\rightarrow1$ $0\rightarrow4$ $0\rightarrow7$ $1\rightarrow2$ $1\rightarrow3$ $1\rightarrow7$ $2\rightarrow3$ $2\rightarrow6$ $3\rightarrow6$ $4\rightarrow5$ $4\rightarrow6$ $4\rightarrow7$ $5\rightarrow2$ $5\rightarrow6$ $7\rightarrow5$ $7\rightarrow2$
Bellman–Ford algorithm demo

Repeat V times: relax all E edges.

pass 1

0→1 0→4 0→7 1→2 1→3 1→7 2→3 2→6 3→6 4→5 4→6 4→7 5→2 5→6 7→5 7→2
Bellman–Ford algorithm demo

Repeat V times: relax all E edges.

<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
<td>5→2</td>
</tr>
<tr>
<td>3</td>
<td>20.0</td>
<td>1→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>26.0</td>
<td>5→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>

pass 1

$0→1$ $0→4$ $0→7$ $1→2$ $1→3$ $1→7$ $2→3$ $2→6$ $3→6$ $4→5$ $4→6$ $4→7$ $5→2$ $5→6$ $7→5$ $7→2$
Bellman–Ford algorithm demo

Repeat V times: relax all E edges.

pass 1

0→1 0→4 0→7 1→2 1→3 1→7 2→3 2→6 3→6 4→5 4→6 4→7 5→2 5→6 7→5 7→2
Bellman–Ford algorithm demo

Repeat V times: relax all E edges.
Bellman–Ford algorithm demo

Repeat V times: relax all E edges.
Bellman–Ford algorithm demo

Repeat V times: relax all E edges.

pass 1

0→1 0→4 0→7 1→2 1→3 1→7 2→3 2→6 3→6 4→5 4→6 4→7 5→2 5→6 7→5 7→2

<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
<td>5→2</td>
</tr>
<tr>
<td>3</td>
<td>17.0</td>
<td>2→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>26.0</td>
<td>5→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>

2-3 successfully relaxed in pass 1, but not pass 0
Bellman–Ford algorithm demo

Repeat V times: relax all E edges.

pass 1

$0 \rightarrow 1$ $0 \rightarrow 4$ $0 \rightarrow 7$ $1 \rightarrow 2$ $1 \rightarrow 3$ $1 \rightarrow 7$ $2 \rightarrow 3$ $2 \rightarrow 6$ $3 \rightarrow 6$ $4 \rightarrow 5$ $4 \rightarrow 6$ $4 \rightarrow 7$ $5 \rightarrow 2$ $5 \rightarrow 6$ $7 \rightarrow 5$ $7 \rightarrow 2$

<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
<td>5→2</td>
</tr>
<tr>
<td>3</td>
<td>17.0</td>
<td>2→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>26.0</td>
<td>5→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>
Bellman–Ford algorithm demo

Repeat V times: relax all E edges.

Table

<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
<td>5→2</td>
</tr>
<tr>
<td>3</td>
<td>17.0</td>
<td>2→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>25.0</td>
<td>2→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>

Diagram

- **pass 1**
 - 0→1
 - 0→4
 - 0→7
 - 1→2
 - 1→3
 - 1→7
 - 2→3
 - 2→6
 - 3→6
 - 4→5
 - 4→6
 - 4→7
 - 5→2
 - 5→6
 - 7→5
 - 7→2
Bellman–Ford algorithm demo

Repeat V times: relax all E edges.

pass 1

$0\rightarrow 1$ $0\rightarrow 4$ $0\rightarrow 7$ $1\rightarrow 2$ $1\rightarrow 3$ $1\rightarrow 7$ $2\rightarrow 3$ $2\rightarrow 6$ $3\rightarrow 6$ $4\rightarrow 5$ $4\rightarrow 6$ $4\rightarrow 7$ $5\rightarrow 2$ $5\rightarrow 6$ $7\rightarrow 5$ $7\rightarrow 2$
Bellman–Ford algorithm demo

Repeat V times: relax all E edges.
Bellman–Ford algorithm demo

Repeat V times: relax all E edges.

pass 1

$0 \rightarrow 1$ $0 \rightarrow 4$ $0 \rightarrow 7$ $1 \rightarrow 2$ $1 \rightarrow 3$ $1 \rightarrow 7$ $2 \rightarrow 3$ $2 \rightarrow 6$ $3 \rightarrow 6$ $4 \rightarrow 5$ $4 \rightarrow 6$ $4 \rightarrow 7$ $5 \rightarrow 2$ $5 \rightarrow 6$ $7 \rightarrow 5$ $7 \rightarrow 2$
Bellman–Ford algorithm demo

Repeat V times: relax all E edges.

Table

<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
<td>5→2</td>
</tr>
<tr>
<td>3</td>
<td>17.0</td>
<td>2→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>25.0</td>
<td>2→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>

Diagram

Pass 1

0→1 0→4 0→7 1→2 1→3 1→7 2→3 2→6 3→6 4→5 4→6 4→7 5→2 5→6 7→5 7→2
Bellman–Ford algorithm demo

Repeat V times: relax all E edges.
Bellman–Ford algorithm demo

Repeat V times: relax all E edges.

Pass 1

0→1 0→4 0→7 1→2 1→3 1→7 2→3 2→6 3→6 4→5 4→6 4→7 5→2 5→6 7→5 7→2
Bellman–Ford algorithm demo

Repeat \(V \) times: relax all \(E \) edges.

pass 1

\[
\begin{align*}
0 \rightarrow 1 & \quad 0 \rightarrow 4 & \quad 0 \rightarrow 7 & \quad 1 \rightarrow 2 & \quad 1 \rightarrow 3 & \quad 1 \rightarrow 7 & \quad 2 \rightarrow 3 & \quad 2 \rightarrow 6 & \quad 3 \rightarrow 6 & \quad 4 \rightarrow 5 & \quad 4 \rightarrow 6 & \quad 4 \rightarrow 7 & \quad 5 \rightarrow 2 & \quad 5 \rightarrow 6 & \quad 7 \rightarrow 5 & \quad 7 \rightarrow 2
\end{align*}
\]
Bellman–Ford algorithm demo

Repeat V times: relax all E edges.

pass 1

\[
\begin{array}{ccccccccccc}
0 & \rightarrow & 1 & 0 & \rightarrow & 4 & 0 & \rightarrow & 7 & 1 & \rightarrow & 2 & 1 & \rightarrow & 3 & 1 & \rightarrow & 7 & 2 & \rightarrow & 3 & 2 & \rightarrow & 6 & 3 & \rightarrow & 6 & 4 & \rightarrow & 5 & 4 & \rightarrow & 6 & 4 & \rightarrow & 7 & 5 & \rightarrow & 2 & 5 & \rightarrow & 6 & 7 & \rightarrow & 5 & 7 & \rightarrow & 2
\end{array}
\]
Bellman–Ford algorithm demo

Repeat V times: relax all E edges.

pass 2, 3, 4, 5, 6, 7 (no further changes)
Bellman–Ford algorithm demo

Repeat V times: relax all E edges.

shortest-paths tree from vertex s

<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
<td>5→2</td>
</tr>
<tr>
<td>3</td>
<td>17.0</td>
<td>2→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>25.0</td>
<td>2→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>
Bellman–Ford algorithm: visualization

passes
4

7

10

13
SPT
Bellman–Ford algorithm: analysis

Bellman–Ford algorithm

- Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.
- Repeat V times:
 - Relax each edge.

Proposition. Bellman–Ford computes SPT in any edge-weighted digraph with no negative cycles in time proportional to $E \times V$.

Pf idea. After pass i, found shortest path to each vertex v for which the shortest path from s to v contains i edges (or fewer).
Bellman–Ford algorithm: practical improvement

Observation. If distTo[v] does not change during pass i, no need to relax any edge adjacent from v in pass i+1.

FIFO implementation. Maintain queue of vertices whose distTo[] changed.

be careful to keep at most one copy of each vertex on queue (why?)

Overall effect.

• The running time is still proportional to $E \times V$ in worst case.
• But much faster than that in practice.
Single source shortest-paths implementation: cost summary

<table>
<thead>
<tr>
<th>algorithm</th>
<th>restriction</th>
<th>typical case</th>
<th>worst case</th>
<th>extra space</th>
</tr>
</thead>
<tbody>
<tr>
<td>topological sort</td>
<td>no directed cycles</td>
<td>$E + V$</td>
<td>$E + V$</td>
<td>V</td>
</tr>
<tr>
<td>Dijkstra (binary heap)</td>
<td>no negative weights</td>
<td>$E \log V$</td>
<td>$E \log V$</td>
<td>V</td>
</tr>
<tr>
<td>Bellman–Ford</td>
<td>no negative cycles</td>
<td>$E V$</td>
<td>$E V$</td>
<td>V</td>
</tr>
<tr>
<td>Bellman–Ford (queue–based)</td>
<td>no negative cycles</td>
<td>$E + V$</td>
<td>$E V$</td>
<td>V</td>
</tr>
</tbody>
</table>

Remark 1. Directed cycles make the problem harder.

Remark 2. Negative weights make the problem harder.

Remark 3. Negative cycles makes the problem intractable.
Finding a negative cycle

Negative cycle. Add two methods to the API for SP.

```
boolean hasNegativeCycle()  // is there a negative cycle?
Iterable <DirectedEdge> negativeCycle()  // negative cycle reachable from s
```

digraph

4->5 0.35
5->4 -0.66
4->7 0.37
5->7 0.28
7->5 0.28
5->1 0.32
0->4 0.38
0->2 0.26
7->3 0.39
1->3 0.29
2->7 0.34
6->2 0.40
3->6 0.52
6->0 0.58
6->4 0.93

negative cycle (-0.66 + 0.37 + 0.28)
5->4->7->5

shortest path from 0 to 6
Finding a negative cycle

Observation. If there is a negative cycle, Bellman–Ford gets stuck in loop, updating \texttt{distTo[]} and \texttt{edgeTo[]} entries of vertices in the cycle.

![Diagram](image)

Proposition. If Bellman–Ford updates any vertex \(v \) in pass \(V \), there exists a negative cycle (and can trace \texttt{edgeTo}[v] entries back to find one).

In practice. Check for negative cycles more frequently.
Negative cycle application: arbitrage detection

Problem. Given table of exchange rates, is there an arbitrage opportunity?

<table>
<thead>
<tr>
<th></th>
<th>USD</th>
<th>EUR</th>
<th>GBP</th>
<th>CHF</th>
<th>CAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>USD</td>
<td>1</td>
<td>0.741</td>
<td>0.657</td>
<td>1.061</td>
<td>1.011</td>
</tr>
<tr>
<td>EUR</td>
<td>1.35</td>
<td>1</td>
<td>0.888</td>
<td>1.433</td>
<td>1.366</td>
</tr>
<tr>
<td>GBP</td>
<td>1.521</td>
<td>1.126</td>
<td>1</td>
<td>1.614</td>
<td>1.538</td>
</tr>
<tr>
<td>CHF</td>
<td>0.943</td>
<td>0.698</td>
<td>0.62</td>
<td>1</td>
<td>0.953</td>
</tr>
<tr>
<td>CAD</td>
<td>0.995</td>
<td>0.732</td>
<td>0.65</td>
<td>1.049</td>
<td>1</td>
</tr>
</tbody>
</table>

Ex. $1,000 \Rightarrow 741$ Euros $\Rightarrow 1,012.206$ Canadian dollars $\Rightarrow $1,007.14497.

\[1000 \times 0.741 \times 1.366 \times 0.995 = 1007.14497\]
Theres No Such Thing As A Free Lunch
Milton Friedman
Essays on Public Policy
Negative cycle application: arbitrage detection

Currency exchange graph.

- Vertex = currency.
- Edge = transaction, with weight equal to exchange rate.
- Find a directed cycle whose product of edge weights is > 1.

\[
0.741 \times 1.366 \times 0.995 = 1.00714497
\]

Challenge. Express as a negative cycle detection problem.
Negative cycle application: arbitrage detection

Model as a negative cycle detection problem by taking logarithms.
• Set weight of edge \(v \rightarrow w \) to \(-\ln\) (exchange rate from currency \(v \) to \(w \)).
• Multiplication turns to addition; \(> 1 \) turns to \(< 0 \).
• Find a directed cycle whose sum of edge weights is \(< 0 \) (negative cycle).

Remark. Fastest algorithm is extraordinarily valuable!
Shortest paths summary

Nonnegative weights.
- Arises in many application.
- Dijkstra's algorithm is nearly linear-time.

Acyclic edge-weighted digraphs.
- Arise in some applications.
- Topological sort algorithm is linear time.
- Edge weights can be negative.

Negative weights and negative cycles.
- Arise in some applications.
- Bellman–Ford is quadratic in worst case.
- If no negative cycles, can find shortest paths via Bellman–Ford.
- If negative cycles, can find one via Bellman–Ford.

Shortest-paths is a broadly useful problem-solving model.