Linear Search and Binary Search

The input is an array A of elements in any arbitrary order and a key k and the objective is to output true, if k is in A, false, otherwise. Below is a recursive function to solve this problem.

```python
def LinearSearch(A[lo .. hi], k):
    if lo > hi:
        return False
    else:
        return (A[hi] == k) or LinearSearch(A[lo..hi-1], k)
```

The recurrence relation to express the running time of `LinearSearch` is given by $T(n) = T(n - 1) + c$, with the base case being $T(0) = 1$. We have already solved this recurrence and it yields a running time of $T(n) = \Theta(n)$.

If the input array A is already sorted, we can do significantly better using binary search as follows.

```python
def BinarySearch(A[lo .. hi], k):
    if lo > hi:
        return False
    else:
        mid = floor(lo+hi/2)
        if A[mid] == k:
            return True
        elif A[mid] < k:
            return BinarySearch(A[mid+1 .. hi], k)
        else:
            return BinarySearch(A[lo .. mid-1], k)
```

The running time of this method is given the recurrence $T(n) = T(n/2) + c$, with the base case being $T(0) = 1$. As we have seen before, this recurrence yields a running time of $T(n) = \Theta(\log n)$.

Sorting

Below is a recursive version of insertion sort that we studied a couple of lectures ago.

```python
def InsertionSort(A[lo .. hi]):
    if lo == hi:
        return A
```
else
 A’ = InsertionSort(A[lo..hi-1])
 Insert(A’, A[hi]) // insert element A[hi] into the sorted array A’

Note that the Insert function takes $\Theta(n)$ time for an input array of size n. Thus the running time of Insertion sort is given by the following recurrence.

$$T(n) = \begin{cases}
1, & n = 1 \\
T(n-1) + n, & n \geq 2
\end{cases}$$

It is easy to see that this recurrence yields a running time of $T(n) = \Theta(n^2)$.

To motivate the idea behind the next sorting algorithm (Merge Sort), let’s rewrite InsertionSort function as follows.

InsertionSort(A[lo..hi])
 if lo = hi then
 return A
 else
 // Merge combines two sorted arrays into one sorted array
 Merge(InsertionSort(A[lo..hi-1]), InsertionSort(A[hi..hi]))

The function Merge is as follows.

Merge(A[1..p], B[1..q])
 if p = 0 then
 return B
 if q = 0 then
 return A
 return prepend(A[1], Merge(A[2..p], B[1..q]))
 else
 return prepend(B[1], Merge(A[1..p], B[2..q]))

Note that the running time of Merge is $O(p+q)$. The second recursive call to InsertionSort takes $O(1)$ time and hence the running time of InsertionSort still is $\Theta(n^2)$.

Observe that in InsertionSort the input array A is partitioned into two arrays, one of size $|A| - 1$ and another of size 1. In Merge Sort, we partition the input array of size n in two equal halves (assuming n is a power of 2). Below is the function.

MergeSort(A[1..n])
 if n = 1 then
 return A
 else
 return Merge(MergeSort(A[1..n/2], MergeSort(A[n/2+1..n])))

The running time of MergeSort is given by the following recurrence.

$$T(n) = \begin{cases}
1, & n = 1 \\
2T(n/2) + cn, & n \geq 2
\end{cases}$$

Below are some facts on logarithms that you may find useful.
January 28, 2016 Running time, Divide and Conquer

\[
\begin{align*}
\text{i. } \log_a b &= \frac{1}{\log_b a} \\
\text{ii. } \log_a b &= \frac{\log b}{\log a} \\
\text{iii. } a^{\log_a b} &= b \\
\text{iv. } x^{\log_a x} &= a^{\log_a b}
\end{align*}
\]

We can also solve recurrences by guessing the overall form of the solution and then figure out the constants as we proceed with the proof. Below are some examples.

Example. Consider the following recurrence for the **MergeSort** algorithm.

\[
T(n) = \begin{cases}
1, & n = 1 \\
2T(n/2) + n, & n \geq 2
\end{cases}
\]

Prove that \(T(n) = O(n \lg n) \).

Solution. We will first prove the claim by expanding the recurrence as follows.

\[
T(n) = 2T(n/2) + n \\
= 2^2T(n/2^2) + 2n \\
= 2^3T(n/2^3) + 3n \\
\cdots \\
= 2^kT(n/2^k) + kn
\]

The recursion bottoms out when \(n/2^k = 1 \), i.e., \(k = \lg n \). Thus, we get

\[
T(n) = 2^{\lg n}T(1) + n \lg n \\
= \Theta(n \log n)
\]

We will now prove that \(T(n) = O(n \lg n) \) by using strong induction on \(n \). We will show that for some constant \(c \), whose value we will determine later, \(T(n) \leq cn \lg n \), for all \(n \geq 2 \).

Induction Hypothesis: Assume that the claim is true when \(n = j \), for all \(j \) such that \(2 \leq j \leq k \). In other words, \(T(j) \leq cj \lg j \).

Base Case: \(n = 2 \). The left hand side is given by \(T(2) = 2T(1) + 2 = 4 \) and the right hand side is \(2c \). Thus the claim is true for the base case when \(c \geq 2 \).
Induction Step: We want to show that for $k \geq 2$, $T(k + 1) \leq c(k + 1) \log(k + 1)$. We have

$$T(k + 1) = 2T\left(\frac{k + 1}{2}\right) + (k + 1)$$

$$\leq 2c \left(\frac{k + 1}{2} \log\left(\frac{k + 1}{2}\right)\right) + (k + 1)$$

$$= c(k + 1)(\log(k + 1) - \log 2) + (k + 1)$$

$$= c(k + 1)\log(k + 1) - (c - 1)(k + 1)$$

$$\leq c(k + 1)\log(k + 1) \quad \text{(since } c \geq 2)$$

Example. Consider the following recurrence.

$$T(n) = \begin{cases}
1, & n = 1 \\
2T(n/2) + n^2, & n \geq 2
\end{cases}$$

Prove that $T(n) = \Theta(n^2)$.

Solution. Clearly, $T(n) = \Omega(n^2)$ (because of the n^2 term in the recurrence). To prove that $T(n) = O(n^2)$, we will show using strong induction that for some constant c, whose value we will determine later, $T(n) \leq cn^2$, for all $n \geq 1$.

Induction Hypothesis: Assume that the claim is true when $n = j$, for all j such that $1 \leq j \leq k$. In other words, $T(j) \leq cj^2$.

Base Case: $n = 1$. The claim is clearly true as the left hand side and the right hand side, both equal 1.

Induction Step: We want to show that $T(k + 1) \leq c(k + 1)^2$. We have

$$T(k + 1) = 2T\left(\frac{k + 1}{2}\right) + (k + 1)^2$$

$$\leq 2c \left(\frac{k + 1}{2}\right)^2 + (k + 1)^2$$

$$= \left(\frac{c}{2} + 1\right)(k + 1)^2$$

We want the right hand side to be at most $c(k + 1)^2$. This means that we want $c/2 + 1 \leq c$, which holds when $c \geq 2$. Thus we have shown that $T(n) \leq 2n^2$, for all $n \geq 1$, and hence $T(n) = O(n^2)$.