Example. Consider the following code fragment.

```python
for (i = 0; i < n; i++)
    for (j = 0; j < i; j=j+10)
        print ("run time analysis")
```

Give a tight bound on the running time of this code fragment.

Solution. For each value of \(i\), the body of the inner loop executes \(i/10\) times. Thus the running time of the body of the outer loop is at most \(c(i/10)\), for some positive constant \(c\). Hence the total running time of the code fragment is given by

\[
\sum_{i=0}^{n-1} c\left\lceil \frac{i}{10} \right\rceil = \sum_{i=0}^{n-1} c\left(\frac{i}{10} + 1 \right) = \frac{c(n-1)n}{20} + cn \leq 2cn^2 = O(n^2)
\]

We will now show that \(\sum_{i=0}^{n-1} c\left\lceil \frac{i}{10} \right\rceil = \Omega(n^2)\). Note that

\[
\sum_{i=0}^{n-1} c\left\lceil \frac{i}{10} \right\rceil \geq \sum_{i=0}^{n-1} \frac{ci}{10} = c(n-1)n/20
\]

We want to find positive constants \(c'\) and \(n_0\), such that for all \(n \geq n_0\),

\[
\frac{c(n-1)n}{20} \geq c'n^2
\]

This is equivalent to showing that \(n(c - 20c') \geq c\). This is true when \(c' = c/40\) and \(n \geq 2\). Thus, the running time of the code fragment is \(\Omega(n^2)\).

Example. Consider the following code fragment.

```python
i = n
while (i >= 10) do
    i = i/3
    for j = 1 to n do
        print ("Inner loop")
```

What is an upper-bound on the running time of this code fragment? Is there a matching lower-bound?
Solution. The running time of the body of the inner loop is $O(1)$. Thus the running time of the inner loop is at most $c_1 n$, for some positive constant c_1. The body of the outer loop takes at most $c_2 n$ time, for some positive constant c_2 (note that the statement $i = i/3$ takes $O(1)$ time). Suppose the algorithm goes through t iterations of the while loop. At the end of the last iteration of the while loop, the value of i is $n/3^t$. We know that the code fragment surely finishes when $n/3^t \leq 1$, solving which gives us $t \geq \log_3 n$. This means that the number of iterations of the while loop is at most $O(\log n)$. Thus the total running time is $O(n \log n)$.

We will now show that the running time is $\Omega(n^2)$. We will lower-bound the number of iterations of the outer loop. Note that when the value of i is more than 10 (say, 3^3), the outer loop has not terminated. Solving $n/3^t \geq 3$, gives us that $\log_3 n - 3$ is a lower bound on the number of iterations of the outer loop. For each iteration of the outer loop, the inner loop runs n times. Thus the total running time is at least $cn(\log_3 n - 3)$, for some positive constant c. Note that $cn(\log_3 n - 3) \geq c'n \log n$, when $c' = c/2$ and $n \geq 3^6$. Thus the running time is $\Omega(n \log n)$.

Example. Consider the following code fragment.

```python
for i = 0 to n do
    for j = n down to 0 do
        for k = 1 to j-i do
            print (k)
```
What is an upper-bound on the running time of this algorithm? What is the lower bound?

Solution. Note that for a fixed value of i and j, the innermost loop goes through $\max\{0, j - i\} \leq n$ times. Thus the running time of the above code fragment is $O(n^3)$.

To find the lower bound on the running time, consider the values of i, such that $0 \leq i \leq n/4$ and values of j, such that $3n/4 \leq j \leq n$. Note that for each of the $n^2/16$ different combinations of i and j, the innermost loop executes at least $n/2$ times. Thus the running time is at least

$$(n^2/16)(n/2) = \Omega(n^3)$$

Example. Consider the following code fragment.

```python
for i = 1 to n do
    for j = 1 to i*i do
        for k = 1 to j do
            print (k)
```
Give a tight-bound on the running time of this algorithm? We will assume that n is a power of 2.

Solution. Note that the value of j in the second for-loop is upper bounded by n^2 and the value of k in the innermost loop is also bounded by n^2. Thus the outermost for-loop
iterates for n times, the second for-loop iterates for at most n^2 times, and the innermost loop iterates for at most n^2 times. Thus the running time of the code fragment is $O(n^5)$.

We will now argue that the running time of the code fragment is $\Omega(n^5)$. Consider the following code fragment.

for $i = n/2$ to n do
 for $j = (n/4)\cdot(n/4)$ to $(n/2)\cdot(n/2)$ do
 for $k = 1$ to $(n/4)\cdot(n/4)$ do
 print (k)

Note that the values of i, j, k in the above code fragment form a subset of the corresponding values in the code fragment in question. Thus the running time of the new code fragment is a lower bound on the running time of the code fragment in question. Thus the running time of the code fragment in question is at least $n/2 \cdot 3n^2/16 \cdot n^2/16 = \Omega(n^5)$.

Thus the running time of the code fragment in question is $\Theta(n^5)$.

Example. Consider the following code fragment. We will assume that n is a power of 2.

for $(i = 1; i \leq n; i = 2\cdot i)$ do
 for $j = 1$ to i do
 print (j)

Give a tight-bound on the running time of this algorithm?

Solution. Observe that for $0 \leq k \leq \log_2 n$, in the k^{th} iteration of the outer loop, the value of $i = 2^k$. Thus the running time $T(n)$ of the code fragment can be written as follows.

$$T(n) = \sum_{k=0}^{\log_2 n} 2^k$$
$$= 2^{\log_2 n + 1} - 1$$
$$= 2n - 1$$
$$= \Theta(n)$$

Discussion: Consider a problem X with an algorithm A.

- Algorithm A runs in time $O(n^2)$. This means that the worst case asymptotic running time of algorithm A is upper-bounded by n^2. Is this bound tight? That is, is it possible that the run-time analysis of algorithm A is loose and that one can give a tighter upper-bound on the running time?

- Algorithm A runs in time $\Theta(n^2)$. This means that the bound is tight, that is, a better (tighter) bound on the worst case asymptotic running time for algorithm A is not possible.

- Problem X takes time $O(n^2)$. This means that there is an algorithm that solves problem X on all inputs in time $O(n^2)$.

• Problem X takes $\Theta(n^{1.5})$. This means that there is an algorithm to solve problem X that takes time $O(n^{1.5})$ and no algorithm can do better.

Consider the problem of computing 2^n for any non-negative integer n. Below are four similar looking algorithms to solve this problem.

```python
powerof2(n)
if n = 0
    return 1
else
    return 2 * powerof2(n-1)
```

```python
powerof2(n)
if n = 0
    return 1
else
    return powerof2(n-1) + powerof2(n-1)
```

```python
powerof2(n)
if n = 0
    return 1
else
    tmp = powerof2(n-1)
    return tmp + tmp
```

```python
powerof2(n)
if n = 0
    return 1
else
    tmp = powerof2(floor(n/2))
    if (n is even) then
        return tmp * tmp
    else
        return 2 * tmp * tmp
```

The recurrence for the first and the third method is $T(n) = T(n-1) + O(1)$. The recurrence for the second method is $T(n) = 2T(n-1) + O(1)$, and the recurrence for the last method is $T(n) = T(n/2) + c$ (assuming that n is a power of 2). In all cases the base case is $T(0) = 1$. We solve both these recurrences below. The recurrence for the first and the third method can be solved as follows.
\[T(n) = T(n - 1) + c \]
\[= T(n - 2) + 2c \]
\[= T(n - 3) + 3c \]
\[\ldots \]
\[\ldots \]
\[= T(n - k) + kc \]

The recursion bottoms out when \(n - k = 0 \), i.e., \(k = n \). Thus, we get
\[T(n) = T(0) + kc \]
\[= 1 + nc \]
\[= \Theta(n) \]

The recurrence for the second method can be solved as follows.
\[T(n) = 2T(n - 1) + c \]
\[= 2^2T(n - 2) + (2^0 + 2^1)c \]
\[= 2^3T(n - 3) + (2^0 + 2^1 + 2^2)c \]
\[\ldots \]
\[\ldots \]
\[= 2^kT(n - k) + c \sum_{i=0}^{k-1} 2^i \]

The recursion bottoms out when \(n - k = 0 \), i.e., \(k = n \). Thus, we get
\[T(n) = 2^nT(0) + c \sum_{i=0}^{n-1} 2^i \]
\[= 2^n + c(2^n - 1) \]
\[= \Theta(2^n) \]

The recurrence for the fourth method can be solved as follows.
\[T(n) = T(n/2) + c \]
\[= T(n/2^2) + 2c \]
\[= T(n/2^3) + 3c \]
\[\ldots \]
\[\ldots \]
\[= T(n/2^k) + kc \]
The recursion bottoms out when \(n/2^k < 1 \), i.e., when \(k > \lg n \). Thus, we get

\[
T(n) = T(0) + c(\lg n + 1)
= 1 + \Theta(\lg n)
= \Theta(\lg n)
\]