1. Prove using induction that n is $O(2^n)$.

Solution. We will prove that there exists $c > 0$ and n_0 such that $n < c2^n$ for all $n \geq n_0$. We pick $c = 1$ and $n_0 = 1$.

Induction Hypothesis: Assume that the claim is true when $n = k$, for some $k \geq 1$. In other words, we assume that $k \leq 2^k$, for some $k \geq 1$.

Base Case: $1 \leq 1 \cdot 2^1$

Induction Step: We want to prove the claim when $n = k + 1$.

$k + 1 \leq 2^k + 1 \leq 2^k + 2^k = 2^{k+1}$.

2. Prove that 2^{n^2} is not $O(5^n)$. Do not use any theorems about Big-Oh that you might happen to know other than the definitions.

Solution. We need to prove that for all real constants $c > 0$ and positive integers N, there exists an $n > N$ such that $2^{n^2} > c \cdot 5^n$. By taking logarithms of both parts, we have that

$$n^2 > \log c + n \log 5 \Rightarrow n^2 - n \log 5 - \log c > 0$$

First suppose that $c \leq 1$, which means that $\log c \leq 0 \Rightarrow -\log c \geq 0$. Rewrite (1) as

$$n (n - \log 5) + (-\log c) > 0$$

and notice that this trivially holds for all $n > \log 5$.

Now suppose that $c > 1$, so that $\log c > 0$. Rewrite (1) as

$$n (n - \log 5) > \log c$$

and notice that this trivially holds for all $n > \log 5 + \log c$.

As a result, pick $n = \max \{ \lceil \log 5 \rceil + 1, \lceil \log 5 + \log c \rceil + 1, N + 1 \}$ and we are done.

3. Solve the following recurrence. Give a tight bound, i.e., express your answer using the Θ notation. Assume that $T(n) = 1$, when $n = 1$.

$$T(n) = T(n - 1) + 1/n$$
Solution.

\[T(n) = T(n-1) + \frac{1}{n} = T(n-2) + \frac{1}{(n-1)} + \frac{1}{n} = T(n-3) + \frac{1}{(n-2)} + \frac{1}{(n-1)} + \frac{1}{n} \]

\[
\vdots \]

\[
\vdots \]

\[T(n-k) + \frac{1}{(n-(k-1))} + \frac{1}{(n-(k-2))} + \cdots + \frac{1}{(n-1)} + \frac{1}{n} \]

When \(k = n-1 \), we get

\[T(n) = 1 + \sum_{i=2}^{n} \frac{1}{i} = \sum_{i=1}^{n} \frac{1}{i} = \Theta(\log n) \]

4. Consider the following code fragment

```java
for(int i=1;i<n;i=2*i)
    for (int k = i; k >0; k = k/2)
        print('*');
```

a. Compute the number of stars printed as a function of \(n \). You can assume that \(n = 2^m \).

b. Give a \(\Theta \)-bound.

Solution. Outer loop gets executed \(m \) times where \(n = 2^m \). Inner loop gets executed \(\log i + 1 \) times for each iteration \(i \) of the outer loop, so in total we have

\[
(\log(1) + 1) + (\log(2) + 1) + (\log(4) + 1) + (\log(8) + 1) + \cdots + (\log(2^m) + 1)
= 1 + \frac{m(m+1)}{2} + m + 1
= \frac{(m+1)(m+2)}{2}
\]

hence it is \(\Theta((\log n)^2) \).

5. Modify the quicksort algorithm so that its running time is \(\Theta(n \log n) \) in the worst case. You may assume that all elements are distinct.

Solution. We modify the algorithm that was done in class. Instead of picking an arbitrary pivot, we now use the selection algorithm done in class to obtain the median of the input array (first two lines in \texttt{Partition}). These changes take an additional \(\Theta(n) \) time (note that we could have found the pivotIndex more efficiently, but that would not affect the asymptotic running time).

```
QSort(A[lo..hi])
    if hi <= lo then
```
return
else
 mid = Partition(A, lo, hi)
 QSort(A[lo..mid-1])
 QSort(A[mid+1..hi])

Partition(A, lo, hi, pIndex)
 pivot = Select(A, floor(lo+hi/2))
 pivotIndex = location of pivot in A
 swap(A, pivotIndex, hi)
 left = lo
 right = hi - 1
 while left <= right do
 if (A[left] <= pivot) then
 left = left + 1
 else
 swap(A, left, right)
 right = right - 1
 end while
 swap(A, left, hi)
 return left

Since we partition around the median of the input array, we have the following recurrence
(remember to include the base case, otherwise, you will lose points).

\[
T(n) = \begin{cases}
1, & n = 1 \\
2T(n/2) + n, & n \geq 2
\end{cases}
\]

This recurrence results in \(T(n) = \Theta(n \log n) \), as done in class.

6. Suppose that you have a “black box” worst-case linear-time median subroutine. Give a simple, linear-time algorithm that solves the selection problem for any arbitrary order statistic, i.e., given an unsorted array \(A \) containing \(n \) elements and an integer \(i \), in \(O(n) \) time, your algorithm should return the element in \(A \), which is the \(i^{th} \) smallest element in \(A \). Your algorithm must use the black-box median-finding subroutine. You may assume that \(i \) lies within the bounds of the input array \(A \) and that \(n \) is a power of 2.

Solution. Let the black-box median finding function be called \texttt{Median}. The following algorithm finds the element of rank \(i \).
ModifiedSelect(A[lo,hi], i)
if lo==hi then
 return A[lo]

m = Median(A[lo,hi]) // m is the median element
for(i = lo; i <= hi; i=i+1) // find the index of the median
 if A[i]==m
 mIndex = i
 break
Partition(A[lo,hi], mIndex) // use Partition from QuickSort
if (i == mIndex) then
 return m
else if (i < mIndex) then
 return ModifiedSelect(A[lo,mIndex-1], i)
else
 return ModifiedSelect(A[mIndex+1,hi], i-mIndex)

The running time of the algorithm is given by the recurrence $T(n) = T(n/2) + n$, with the base case being $T(1) = 1$. This recurrence yields a running time of $T(n) = O(n)$, using case 3 of the simplified master theorem.