Announcements

We changed submission time for the final project to **11:59pm tonight**. When you see the TAs, please say **thank you**! They fielded more than 100 Piazza posts yesterday alone, and they advocated for the extension.

Exam Review Session on Sunday December 13. We will release a practice exam.

Final exam is on Tuesday December 15 at **9am**. 3 locations:

- Skirkanich Auditorium: Last names A-G
- Levine Hall 101 (Wu and Chen): Last names H-P
- LRSM Auditorium: Last names R-Z

1 page of handwritten notes is allowed. Both sides of a 8.5"x11" sheet.

Exam composition: 50% from material after midterm 2, 25% from midterm 1 and 25% from midterm 2.

Please submit a course evaluation **and** an end of term survey.
COURSE WRAP-UP

- Intractable problems: P versus NP
- Course goals
- What you can do next
Theory of Algorithms: Classifying Problems

Goal. Classify problems according to computational requirements.

<table>
<thead>
<tr>
<th>complexity</th>
<th>order of growth</th>
<th>examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>linear</td>
<td>N</td>
<td>min, max, median, Burrows-Wheeler transform, ...</td>
</tr>
<tr>
<td>linearithmic</td>
<td>$N \log N$</td>
<td>sorting, element distinctness, ...</td>
</tr>
<tr>
<td>quadratic</td>
<td>N^2</td>
<td>?</td>
</tr>
<tr>
<td>exponential</td>
<td>c^N</td>
<td>?</td>
</tr>
</tbody>
</table>

Frustrating news. Huge number of problems have defied classification.
Theory of Algorithms: Classifying Problems

Goal. Classify problems according to computational requirements.

<table>
<thead>
<tr>
<th>complexity</th>
<th>order of growth</th>
<th>examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>linear</td>
<td>N</td>
<td>$\text{min, max, median, Burrows-Wheeler transform, } \ldots$</td>
</tr>
<tr>
<td>linearithmic</td>
<td>$N \log N$</td>
<td>$\text{sorting, element distinctness, } \ldots$</td>
</tr>
<tr>
<td>$M(N)$</td>
<td>?</td>
<td>$\text{integer multiplication, division, square root, } \ldots$</td>
</tr>
<tr>
<td>$MM(N)$</td>
<td>?</td>
<td>$\text{matrix multiplication, } A x = b, \text{ least square, determinant, } \ldots$</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>NP-complete</td>
<td>probably not N^k</td>
<td>$\text{3-SAT, IND-SET, ILP, } \ldots$</td>
</tr>
</tbody>
</table>

Good news. Can put many problems into equivalence classes.
Complexity class. Set of problems sharing some computational property.

Bad news. Lots of complexity classes (496 animals in zoo).
Problem classifications via reductions

Reductions are important in practice to:

- Design algorithms.
- Design reusable software modules.
 - stacks, queues, priority queues, symbol tables, sets, graphs
 - sorting, regular expressions, suffix arrays
 - MST, shortest paths, maxflow, linear programming
- Determine difficulty of your problem and choose the right tool.

Reductions are important in theory to:

- Design algorithms.
- Establish lower bounds.
- Classify problems according to their computational requirements.

We will look at a special classification of algorithms: P versus NP
Intractability: Bird's-eye view

Def. A problem is **intractable** if it can't be solved in polynomial time.

Goal. Prove that a problem is intractable.

Two problems that provably require exponential time.

- Given a constant-size program, does it halt in at most K steps?
- Given N-by-N checkers board position, can the first player force a win?

Frustrating news. Few problems have provably exponential time.
A core problem: satisfiability

SAT. Given a system of boolean equations, find a solution.

Ex.

\[
\begin{align*}
\neg x_1 & \text{ or } x_2 & \text{ or } x_3 & = \text{ true} \\
x_1 & \text{ or } \neg x_2 & \text{ or } x_3 & = \text{ true} \\
\neg x_1 & \text{ or } \neg x_2 & \text{ or } \neg x_3 & = \text{ true} \\
\neg x_1 & \text{ or } \neg x_2 & \text{ or } & x_4 = \text{ true} \\
\neg x_2 & \text{ or } x_3 & \text{ or } x_4 & = \text{ true}
\end{align*}
\]

3-SAT. All equations of this form (with three variables per equation).

Key applications.

- Automatic verification systems for software.
- Electronic design automation (EDA) for hardware.
- Many others
Satisfiability is conjectured to be intractable

Q. How to solve an instance of 3-SAT with N variables?
A. Exhaustive search: try all 2^N truth assignments.

Q. Can we do anything substantially more clever?

Conjecture ($P \neq NP$). 3-SAT is intractable (no poly-time algorithm).
Polynomial-time reductions

Problem X **poly-time reduces** to problem Y if X can be solved with:

- Polynomial number of standard computational steps.
- Polynomial number of calls to Y.

Establish intractability. If 3-SAT poly-time reduces to Y, then Y is intractable. (assuming 3-SAT is intractable)

Mentality.

- If I could solve Y in poly-time, then I could also solve 3-SAT in poly-time.
- 3-SAT is believed to be intractable.
- Therefore, so is Y.
Integer linear programming

ILP. Given a system of linear inequalities, find an integral solution.

\[
\begin{align*}
3x_1 + 5x_2 + 2x_3 + x_4 + 4x_5 & \geq 10 \\
5x_1 + 2x_2 + 4x_4 + 1x_5 & \leq 7 \\
x_1 + x_3 + 2x_4 & \leq 2 \\
3x_1 + 4x_3 + 7x_4 & \leq 7 \\
x_1 + x_4 & \leq 1 \\
x_1 + x_3 + x_5 & \leq 1 \\
\text{all } x_i & = \{0, 1\}
\end{align*}
\]

Context. Cornerstone problem in operations research.

Remark. Finding a real-valued solution is tractable (linear programming).
3-SAT poly-time reduces to ILP

3-SAT. Given a system of boolean equations, find a solution.

\[
\begin{align*}
&\neg x_1 \text{ or } x_2 \text{ or } x_3 = \text{ true} \\
&x_1 \text{ or } \neg x_2 \text{ or } x_3 = \text{ true} \\
&\neg x_1 \text{ or } \neg x_2 \text{ or } \neg x_3 = \text{ true} \\
&\neg x_1 \text{ or } \neg x_2 \text{ or } \neg x_3 \text{ or } x_4 = \text{ true} \\
&\neg x_2 \text{ or } x_3 \text{ or } x_4 = \text{ true }
\end{align*}
\]

ILP. Given a system of linear inequalities, find a 0-1 solution.

\[
\begin{align*}
&(1 - x_1) + x_2 + x_3 \geq 1 \\
&x_1 + (1 - x_2) + x_3 \geq 1 \\
&(1 - x_1) + (1 - x_2) + (1 - x_3) \geq 1 \\
&(1 - x_1) + (1 - x_2) + x_4 \geq 1 \\
&(1 - x_2) + x_3 + x_4 \geq 1
\end{align*}
\]

Solution to this ILP instance gives solution to original 3-SAT instance
More poly-time reductions from 3-satisfiability

Conjecture. 3-SAT is intractable.
Implication. All of these problems are intractable.
Implications of poly-time reductions from 3-satisfiability

Establishing intractability through poly-time reduction is an important tool in guiding algorithm design efforts.

Q. How to convince yourself that a new problem is (probably) intractable?

A1. [hard way] Long futile search for an efficient algorithm (as for 3-SAT).

A2. [easy way] Reduction from 3-SAT.

Caveat. Intricate reductions are common.
Search problems

Search problem. Problem where you can check a solution in poly-time.

Ex 1. 3-SAT.

\[-x_1 \lor x_2 \lor x_3 = \text{true}\]
\[x_1 \lor \neg x_2 \lor x_3 = \text{true}\]
\[\neg x_1 \lor \neg x_2 \lor \neg x_3 = \text{true}\]
\[\neg x_1 \lor \neg x_2 \lor \neg x_3 \lor x_4 = \text{true}\]
\[\neg x_2 \lor x_3 \lor x_4 = \text{true}\]

Ex 2. FACTOR. Given an N-bit integer x, find a nontrivial factor.

\[147573952589676412927 \quad \text{instance I}\]
\[193707721 \quad \text{solution S}\]
P vs. NP

P. Set of search problems solvable in poly-time.

Importance. What scientists and engineers can compute feasibly.

NP. Set of search problems (checkable in poly-time).

Importance. What scientists and engineers aspire to compute feasibly.

Fundamental question.

Consensus opinion. No.
Cook-Levin theorem

A problem is **NP-COMPLETE** if
- It is in **NP**.
- All problems in **NP** poly-time to reduce to it.

Cook-Levin theorem. 3-SAT is **NP-COMPLETE**.

Corollary. 3-SAT is tractable if and only if P = NP.

Two worlds.

![Diagram showing two worlds: one with P ≠ NP and the other with P = NP.]
Implications of Cook-Levin theorem

All of these problems (and many, many more) poly-time reduce to 3-SAT.
Implications of Karp + Cook-Levin

All of these problems are **NP–COMPLETE**; they are manifestations of the same really hard problem.
Summary

P. Class of search problems solvable in poly-time.

NP. Class of all search problems, some of which seem wickedly hard.

NP-complete. Hardest problems in NP.

Intractable. Problem with no poly-time algorithm.

Many fundamental problems are NP-Complete.

Use theory as a guide.

- A poly-time algorithm for an NP-complete problem would be a stunning breakthrough (a proof that P = NP).
- You will confront NP-complete problems in your career.
- Safe to assume that P ≠ NP and that such problems are intractable.
- Identify these situations and proceed accordingly.
Farewell to Algorithms

What you learned

<table>
<thead>
<tr>
<th>topic</th>
<th>data structures and algorithms</th>
</tr>
</thead>
<tbody>
<tr>
<td>data types</td>
<td>stack, queue, bag, union-find, priority queue</td>
</tr>
<tr>
<td>sorting</td>
<td>quicksort, mergesort, heapsort, radix sorts</td>
</tr>
<tr>
<td>searching</td>
<td>BST, red-black BST, hash table</td>
</tr>
<tr>
<td>graphs</td>
<td>BFS, DFS, Prim, Kruskal, Dijkstra</td>
</tr>
<tr>
<td>strings</td>
<td>KMP, regular expressions, tries, data compression</td>
</tr>
</tbody>
</table>
Farewell to Algorithms

What you can do next

CIS 320 - Introduction to Algorithms
CIS 330 - Design Principles of Information Systems
CIS 331 - Intro to Networks and Security
CIS 341 - Compilers and Interpreters
CIS 350 - Software Design/Engineering
CIS 390 - Robotics
CIS 391 - Introduction to Artificial Intelligence
CIS 450 - Database and Information Systems
CIS 460 - Computer Graphics
CIS 500 - Software Foundations
CIS 519 - Introduction to Machine Learning
Algorithms pervade the modern world
Algorithms are integral to disciplines beyond computer science

You could help to unlock the secrets of life and of the universe.

“Computer models mirroring real life have become crucial for most advances made in chemistry today.... Today the computer is just as important a tool for chemists as the test tube.”

— Royal Swedish Academy of Sciences
(Nobel Prize in Chemistry 2013)

Martin Karplus, Michael Levitt, and Arieh Warshel
“I will, in fact, claim that the difference between a bad programmer and a good one is whether the programmer considers code or data structures more important. Bad programmers worry about the code. Good programmers worry about data structures and their relationships.”

— Linus Torvalds (creator of Linux)
You are now better prepared for your job interviews.
Farewell to Algorithms

My hope for what you got out of 121:

- You are now a more proficient programmer
- You have a toolkit of algorithms that you can use in your programs
- You have an understanding of why selecting one data structure or algorithm over another is advantageous for large data sets
- You have confidence going into computer science job interviews
Thank you!

I really enjoyed teaching you!

Please stay in touch!

- Email me if you use 121 knowledge to get a job. ccb@upenn.edu
- Take my classes. NETS 213 "Crowdsourcing and Human Computation" (this Spring), CIS 525 "Machine Translation" (next Spring)
- Learn about my research. Stop by my office (Levine 506). I’m always eager to talk about my research and explore potential undergraduate research opportunities.

Thank you for making this such a good experience for me.