Probability Distributions

Tossing a coin is an experiment with exactly two outcomes: heads (“success”) with a probability of, say \(p \), and tails (“failure”) with a probability of \(1 - p \). Such an experiment is called a Bernoulli trial. Let \(Y \) be a random variable that is 1 if the experiment succeeds and is 0 otherwise. \(Y \) is called a Bernoulli or an indicator random variable. For such a variable we have

\[
E[Y] = p \cdot 1 + (1 - p) \cdot 0 = p = \Pr[Y = 1]
\]

Thus for a fair coin if we consider heads as "success" then the expected value of the corresponding indicator random variable is \(1/2 \).

A sequence of Bernoulli trials means that the trials are independent and each has a probability \(p \) of success. We will study two important distributions that arise from Bernoulli trials: the geometric distribution and the binomial distribution.

The Geometric Distribution

Consider the following question. Suppose we have a biased coin with heads probability \(p \) that we flip repeatedly until it lands on heads. What is the distribution of the number of flips? This is an example of a geometric distribution. It arises in situations where we perform a sequence of independent trials until the first success where each trial succeeds with a probability \(p \).

Note that the sample space \(\Omega \) consists of all sequences that end in \(H \) and have exactly one \(H \). That is

\[
\Omega = \{H, TH, TTH, TTTTH, \ldots\}
\]

For any \(\omega \in \Omega \) of length \(i \), \(\Pr[\omega] = (1 - p)^{i-1}p \).

Definition. A geometric random variable \(X \) with parameter \(p \) is given by the following distribution for \(i = 1, 2, \ldots \):

\[
\Pr[X = i] = (1 - p)^{i-1}p
\]

We can verify that the geometric random variable admits a valid probability distribution as follows:

\[
\sum_{i=1}^{\infty} (1 - p)^{i-1}p = p \sum_{i=1}^{\infty} (1 - p)^{i-1} = \frac{p}{1 - p} \sum_{i=1}^{\infty} (1 - p)^i = \frac{p}{1 - p} \cdot \frac{1 - p}{1 - (1 - p)} = 1
\]

Note that to obtain the second-last term we have used the fact that \(\sum_{i=1}^{\infty} c^i = \frac{c}{1 - c} \), \(|c| < 1 \).
Let’s now calculate the expectation of a geometric random variable, X. We can do this in several ways. One way is to use the definition of expectation.

\[
E[X] = \sum_{i=0}^{\infty} i \Pr[X = i]
\]

\[
= \sum_{i=0}^{\infty} i(1-p)^{i-1}p
\]

\[
= \frac{p}{1-p} \sum_{i=0}^{\infty} i(1-p)^i
\]

\[
= \left(\frac{p}{1-p} \right) \left(\frac{1-p}{(1-(1-p))^2} \right)
\]

\[
= \left(\frac{p}{1-p} \right) \left(\frac{1-p}{p^2} \right)
\]

\[
= \frac{1}{p}
\]

Another way to compute the expectation is to note that X is a random variable that takes on non-negative values. From a theorem proved in last class we know that if X takes on only non-negative values then

\[
E[X] = \sum_{i=1}^{\infty} \Pr[X \geq i]
\]

Using this result we can calculate the expectation of the geometric random variable X. For the geometric random variable X with parameter p,

\[
\Pr[X \geq i] = \sum_{j=i}^{\infty} (1-p)^{j-1}p = (1-p)^{i-1}p \sum_{j=0}^{\infty} (1-p)^j = (1-p)^{i-1}p \times \frac{1}{1-(1-p)} = (1-p)^{i-1}
\]

Therefore

\[
E[X] = \sum_{i=1}^{\infty} \Pr[X \geq i] = \sum_{i=1}^{\infty} (1-p)^{i-1} = \frac{1}{1-p} \sum_{i=1}^{\infty} (1-p)^i = \frac{1}{1-p} \cdot \frac{1-p}{1-(1-p)} = \frac{1}{p}
\]

Memoryless Property. For a geometric random variable X with parameter p and for $n > 0$,

\[
\Pr[X = n + k \mid X > k] = \Pr[X = n]
\]

Conditional Expectation. The following is the definition of conditional expectation.

\[
E[Y \mid Z = z] = \sum_y y \Pr[Y = y \mid Z = z],
\]

where the summation is over all possible values y that the random variable Y can assume.
Example. For any random variables X and Y,

$$E[X] = \sum_y \Pr[Y = y]E[X | Y = y]$$

We can also calculate the expectation of a geometric random variable X using the memoryless property of the geometric random variable. Let Y be a random variable that is 0, if the first flip results in tails and that is 1, if the first flip is a heads. Using conditional expectation we have

$$E[X] = \Pr[Y = 0]E[X | Y = 0] + \Pr[Y = 1]E[X | Y = 1]$$

$$= (1 - p)(E[X] + 1) + p \cdot 1 \quad \text{(using the memoryless property)}$$

$$\therefore pE[X] = 1$$

$$E[X] = \frac{1}{p}$$

Binomial Distributions

Consider an experiment in which we perform a sequence of n coin flips in which the probability of obtaining heads is p. How many flips result in heads?

If X denotes the number of heads that appear then

$$\Pr[X = j] = \binom{n}{j} p^j (1 - p)^{n-j}$$

Definition. A *binomial* random variable X with parameters n and p is defined by the following probability distribution on $j = 0, 1, 2, \ldots, n$:

$$\Pr[X = j] = \binom{n}{j} p^j (1 - p)^{n-j}$$

We can verify that the above is a valid probability distribution using the binomial theorem as follows

$$\sum_{j=1}^{n} \binom{n}{j} p^j (1 - p)^{n-j} = (p + (1 - p))^n = 1$$

What is the expectation of a binomial random variable X? We can calculate $E[X]$ is two
ways. We first calculate it directly from the definition.

\[
E[X] = \sum_{j=0}^{n} j \binom{n}{j} p^j (1-p)^{n-j}
\]

\[
= \sum_{j=0}^{n} j \frac{n!}{j!(n-j)!} p^j (1-p)^{n-j}
\]

\[
= \sum_{j=1}^{n} \frac{n!}{j!(n-j)!} p^j (1-p)^{n-j}
\]

\[
= \sum_{j=1}^{n} \frac{(j-1)!}{(n-j)!} p^j (1-p)^{n-j}
\]

\[
= np \sum_{j=1}^{n} \frac{(n-1)!}{(j-1)!((n-1)-(j-1))!} p^{j-1}(1-p)^{(n-1)-(j-1)}
\]

\[
= np \sum_{k=0}^{n-1} \frac{(n-1)!}{k!(n-1-k)!} p^k (1-p)^{(n-1)-k}
\]

\[
= np \sum_{k=0}^{n-1} \binom{n-1}{k} p^k (1-p)^{(n-1)-k}
\]

\[
= np
\]

The last equation follows from the binomial expansion of \((p + (1-p))^{n-1}\).

We can obtain the result in a much simpler way by using the linearity of expectation. Let \(X_i, 1 \leq i \leq n\) be the indicator random variable that is 1 if the \(i\)th flip results in heads and is 0 otherwise. We have \(X = \sum_{i=1}^{n} X_i\). By the linearity of expectation we have

\[
E[X] = \sum_{i=1}^{n} E[X_i] = \sum_{i=1}^{n} p = np
\]

What is the variance of the binomial random variable \(X\)? Since \(X = \sum_{i=1}^{n} X_i\), and \(X_1, X_2, \ldots, X_n\) are independent we have

\[
\text{Var}[X] = \sum_{i=1}^{n} \text{Var}[X_i]
\]

\[
= \sum_{i=1}^{n} E[X^2_i] - E[X_i]^2
\]

\[
= n(p - p^2)
\]

\[
= np(1 - p)
\]
Coupon Collector’s Problem.

We are trying to collect \(n \) different coupons that can be obtained by buying cereal boxes. The objective is to collect at least one coupon of each of the \(n \) types. Assume that each cereal box contains exactly one coupon and any of the \(n \) coupons is equally likely to occur. How many cereal boxes do we expect to buy to collect at least one coupon of each type?

Solution. Let the random variable \(X \) denote the number of cereal boxes bought until we have at least one coupon of each type. We want to compute \(E[X] \). Let \(X_i \) be the random variable denoting the number of boxes bought to get the \(i \)th new coupon. Clearly,

\[
X = X_1 + X_2 + X_3 + \ldots + X_n
\]

Using the linearity of expectation we have

\[
E[X] = E[X_1] + E[X_2] + E[X_3] + \ldots + E[X_n] \quad (1)
\]

What is the distribution of random variable \(X_i \)? Observe that the probability of obtaining the \(i \)th new coupon is given by

\[
p_i = \frac{n - (i - 1)}{n} = \frac{n - i + 1}{n}
\]

Thus the random variable \(X_i, 1 \leq i \leq n \) is a geometric random variable with parameter \(p_i \).

\[
E[X_i] = \frac{1}{p_i} = \frac{n}{n - i + 1}
\]

Combining this with equation (1) we get

\[
E[X] = \frac{n}{n} + \frac{n}{n-1} + \frac{n}{n-2} + \cdots + \frac{n}{2} + \frac{n}{1} = n \sum_{i=1}^{n} \frac{1}{i}
\]

The summation \(\sum_{i=1}^{n} \frac{1}{i} \) is known as the harmonic number \(H(n) \) and \(H(n) = \ln n + c \), for some constant \(c < 1 \).

Hence the expected number of boxes needed to collect \(n \) coupons is about \(nH(n) < n(\ln n + 1) \).

Relations

A binary relation is a set of ordered pairs. For example, let \(R = \{(1, 2), (2, 3), (5, 4)\} \). Then since \((1, 2) \in R\), we say that 1 is related to 2 by relation \(R \). We denote this by \(1 \, R \, 2 \). Similarly, since \((4, 7) \notin R\), 4 is not related to 7 by relation \(R \), denoted by \(4 \not\, R \, 7 \).

A binary relation \(R \) from set \(A \) to set \(B \) is a subset of the cartesian product \(A \times B \). When \(A = B \), we say that \(R \) is a relation on set \(A \).
Example. Let $A = \{1, 2, 3, 4\}$ and $B = \{a, b, c\}$. Consider the following relations.

$R_1 = \{(1, 1), (1, 2), (2, 2), (2, 3)\}$
$R_2 = \{(1, 2), (2, 3), (3, 4), (4, 1), (4, 4)\}$
$R_3 = \{(1, a), (2, a), (3, b), (4, c)\}$
$R_4 = \{(a, 1), (a, 3), (a, 4), (c, 1)\}$
$R_5 = \{(a, a), (a, b), (1, c)\}$

R_1 and R_2 are relations on A. R_3 is a relation from A to B. R_4 is a relation from B to A. R_5 is not a relation on sets A and B and it is neither a relation from A to B nor a relation from B to A.

Below are some more examples of relations.

- If S is a set then “is a subset of”, \subseteq is a relation on $\mathcal{P}(S)$, the power set of S.
- “is a student in” is a relation from the set of students to the set of courses.
- “$=$” is a relation on \mathbb{Z}.
- “has a path in G to” is a relation on $V(G)$, the set of vertices in G.

Example. How many relations are there on a set of n elements?

Solution. Note that $|A \times A| = n^2$. Since any relation on A is a subset of $A \times A$, the number of possible relations is the cardinality of the power set of $A \times A$, which is 2^{n^2}.