GRAPH THEORY

We proved in the previous lecture that in a tree the number of edges is completely determined by the number of nodes: $|E| = |V| - 1$.

Example 20.1 Prove that if we erase any edge in a tree then the resulting graph is not connected anymore.

Solution: If we erase an edge then the resulting graph cannot be a tree, by the contrapositive of “tree implies $|E| = |V| - 1$”. But erasing an edge does not create cycles so the resulting graph is still acyclic. The only way it can fail to be a tree is if it is disconnected. ■

Definition 20.2 An edge is cut edge in a graph if erasing it strictly increases the number of connected components.

Example 20.1 shows that in a tree every edge is a cut edge. But how many connected components result from such an erasure?

Example 20.3 Prove that erasing a cut edge in a graph increases the number of connected components by exactly one.

Solution: Let $e \equiv u-v$ be a cut edge in $G = (V, E)$. Erasing e produces the graph $G_e = (V, E \setminus \{e\})$. u and v must belong to the same connected component of G (why?), call it D, and this is the only connected component of G affected by the erasure. Suppose toward a contradiction, that in G_e the component D splits into three or more distinct components. Let D_1, D_2, D_3 be three of these components and consider three distinct vertices $w_1 \in D_1, w_2 \in D_2, w_3 \in D_3$. In G there existed paths $w_1 \cdots w_2, w_2 \cdots w_3, w_3 \cdots w_1$ but in G_e these paths cannot exist. Thus, e appears in all three of these paths in G.

We will show that this situation implies that there is a walk (hence a path) in G_e between at least two of the three vertices w_1, w_2, w_3, which contradicts the fact that in G_e, these are distinct connected components.
Consider the paths \(w_1 \cdots w_2 \), \(w_2 \cdots w_3 \), \(w_3 \cdots w_1 \) as sequences of vertices and edges which gives them “direction”. All three paths traverse \(e \) but there are only two traversal directions for \(e \) so by PHP two of the paths must traverse \(e \) in the same direction. W.l.o.g. we can assume that these two paths are \(p_1 \equiv w_1 \cdots u \cdots v \cdots w_2 \) and \(p_2 \equiv w_2 \cdots u \cdots v \cdots w_3 \). From \(p_1 \) and \(p_2 \) we construct in \(G \) a walk \(w_1 \cdots u \cdots w_2 \) that does not contain \(e \) and is therefore also a walk in \(G_e \).

Example 20.4 Prove that cut edges cannot be part of any cycle.

Solution: We prove the contrapositive, i.e., we prove that any edge that belongs to a cycle is not a cut edge.

Let \(e \) belong to a cycle \(C \) in \(G \). If two vertices \(u \) to \(v \) are connected by a path in \(G \) that uses \(e \) then erasing \(e \) still leaves \(u \) and \(v \) connected, because we can replace \(e \) with the path that is the part of \(C \) obtained by deleting \(e \) from \(C \) thus obtaining a walk (hence a path) from \(u \) to \(v \).

In Proposition 18.9 we proved that “where there is a walk there is a path”. One might think that something similar is true for cycles, i.e., “where there is a closed walk there is a cycle”. This is false, however. A trivial counterexample consists of a walk of length 0. A more significant counterexample would be any closed walk in a tree with two or more nodes; it cannot contain a cycle because trees are acyclic. However, we do have the following:

Proposition 20.5 Any closed walk of non-zero length that traverses an edge exactly once contains a cycle (here “contains” means that the edges of the cycle are among the edges of the walk and are traversed in the same direction).

Proof: The walk cannot have length 1 because it is closed and it cannot have length 2, i.e., be \(u \cdots v \cdots u \), because it would traverse the edge \(u \cdots v \) twice. Thus, it must have length \(\geq 3 \).

We have three cases.

Case 1: the walk is \(u \cdots v \cdots \), has length \(\geq 3 \), and it traverses the edge \(\{u, v\} \) exactly once. Then, the portion \(v \cdots u \) of the walk has length \(\geq 2 \). By Proposition 18.9 there exists a path from \(v \) to \(u \). This path cannot have length 1 because then it would be \(v \cdots u \) and the original walk \(u \cdots v \cdots u \) would traverse the edge \(\{u, v\} \) twice. Hence this path has length \(\geq 2 \) and together with the edge \(u \cdots v \) it forms a cycle. Note that this cycle is not necessarily contained in the original closed walk. For that we would a strengthened version of Proposition 18.9: every walk contains a path with the same endpoints. Although we did not prove this (it’s somewhat messy), it is actually true and you should recall this for further use.

Case 2: the walk is \(u \cdots \cdots v \cdots u \), has length \(\geq 3 \), and it traverses the edge \(\{u, v\} \) exactly once. This case is similar to Case 1 and we obtain again a cycle.

Case 3: the walk is \(u \cdots \cdots v \cdots w \cdots \cdots \), it has length \(\geq 3 \), it traverses the edge \(\{v, w\} \) exactly once, \(u \neq v \), and \(u \neq w \). Again we invoke Proposition 18.9 (strengthened version) for the portions \(u \cdots \cdots v \), etc.
and $w \cdots u$ of the walk and obtain a path p from u to v and a path q from w to u. Importantly, neither p nor q contains the edge $\{v, w\}$. We now have some subcases.

Case 3a: v occurs in q. Then the portion $w \cdots v$ of q must have length ≥ 2 otherwise $\{v, w\}$ is traversed twice. It follows that $v \cdots w \cdots v$ is a cycle.

Case 3b: w occurs in p. Similar to Case 3a, $w \cdots v \cdots w$ is a cycle.

Case 3c: v does not occur in q and w does not occur in p. In this case, p and q still have vertices in common, certainly u one such vertex, but they are all distinct from v and from w. Among all these common vertices let z be the vertex that is closest to v in p. Then the portion $z \cdots v$ of p and the portion $w \cdots z$ of q have only z in common. Therefore $z \cdots v \cdots w \cdots z$ is a cycle.

In all the cases the cycle whose existence we proved was formed of edges that already appeared in the original walk.

Example 20.6 Prove that adding an edge to an acyclic graph creates at most one cycle.

Solution: Let u, v be two distinct non-adjacent vertices in an acyclic graph $G = (V, E)$. We add $u-v$ thus producing $G_{uv} = (V, E \cup \{u-v\})$ and we wish to show that G_{uv} has at most one cycle.

Suppose, toward a contradiction, that G_{uv} has at least two distinct cycles C_1 and C_2. Since G_{uv} was acyclic $u-v$ must belong to both C_1 and C_2. Since C_1 and C_2 are distinct one of them must contain an edge that is not in the other one. Let e be that edge.

Deleting $u-v$ from C_1 gives us a path from u to v in G. Deleting $u-v$ from C_2 gives us a path from v to u in G. Concatenating these two walks gives us a closed walk from u to u that traverses e exactly once. By the proposition above, such a closed walk must contain a cycle, which contradicts the acyclicity of G.

Proposition 20.7 For any graph $G = (V, E)$ the following statements are equivalent:

(i) G is a tree, i.e., it is connected and acyclic.

(ii) G is connected and $|E| = |V| - 1$.

(iii) G is minimally connected, i.e., it is connected and $G_e = (V, E \setminus \{e\})$, for any edge e, is disconnected (equivalently, every edge is a cut edge).

(iv) G is maximally acyclic, i.e., it is acyclic and or any two non-adjacent vertices u and v, adding the edge $u-v$ creates a cycle.
(v) Any two vertices of G are connected by a unique path.

Proof:

(i)\Rightarrow(ii) We proved this in Lecture 19.

(ii)\Rightarrow(iii) We proved this above.

(iii)\Rightarrow(iv) Let G be minimally connected, i.e., all its edges are cut edges. Then G is acyclic. Indeed, if G had a cycle then the edges in that cycle cannot be cut edges, as proved above.

Now let u and v be non-adjacent vertices in G. We add $u-v$ and obtain $G_{uv} = (V, E \cup \{u-v\})$. Since G is connected there is a path from u to v in G. Adding $u-v$ to this path produces a cycle in G_{uv}.

(iv)\Rightarrow(v) Let u, v be any two vertices of G. If $u = v$ then they are connected by a unique path, the path of length 0. If u and v are adjacent, then we have the path $u-v$. Suppose, toward a contradiction, that there is another path from u to v. Then this path together with $u-v$ forms a cycle, which contradicts the acyclicity of G.

We are left with the case when u and v are non-adjacent. Then $G_{uv} = (V, E \cup \{u-v\})$ has at least one cycle, C. This cycle must contain $u-v$. Deleting $u-v$ from C gives us a walk, in fact a path, from u to v, which is in G.

Now suppose there were two distinct such path in G from u to v. Each of them, together with $u-v$ creates a distinct cycle in G_{uv}. But we have shown above that adding an edge to an acyclic graph creates at most one cycle so we have a contradiction.

(v)\Rightarrow(i) The graph G is connected because there is a path between any two nodes. Suppose, toward a contradiction, that G has a cycle. Let u and v be two distinct nodes in this cycle. The cycle yields two distinct paths from u to v so we have a contradiction. ■