CIS 160
Recitation Guide - Week 10

Topics Covered: Digraphs, Maximum Path, k-colorable

Problem 1
Prove that every directed acyclic graph (DAG) has a vertex with in-degree of 0.

Solution:
Consider directed acyclic graph \(G = (V, E) \). We prove using contradiction that this graph has a vertex with in-degree 0. For the sake of contradiction, assume there are no vertices in \(G \) with in-degree 0.

Let \(P \) be a directed path of maximum length in \(G \). Consider the vertices on this path to be \(v_1, v_2, \ldots, v_k \), where \(1 \leq k \leq |V| \). We thus know that \(v_2, \ldots, v_k \) do not have in-degree of 0. As every vertex on this path has to have in-degree of greater than 0, there exists an edge going from some vertex \(u \) to \(v_1 \). We now have two cases:

Case 1: \(u \) is not a vertex on \(P \), meaning there exists a path \(P' = u, v_1, v_2, \ldots, v_k \). \(P' \) is a longer path, contradiction.

Case 2: \(u \) is on \(P \). Assume \(u = v_i \) (\(1 < i \leq k \)). Then, \(G \) contains a cycle: \(v_1, v_2, \ldots, v_i, v_1 \), which contradicts with the fact that \(G \) is a directed acyclic graph.

Therefore, by contradiction, we have shown that every directed acyclic graph must have at least one vertex with in-degree of 0.
Problem 2

Let P_1 and P_2 denote two paths in a connected graph G with maximum length. Prove that P_1 and P_2 have a common vertex.

Solution:

Assume towards a contradiction that P_1 and P_2 do not share a common vertex. Since the graph is connected, there exists a shortest path connecting P_1 to P_2 with endpoints at vertices u in P_1 and v in P_2. Call this shortest path connecting u to v P_3. P_3 contains no vertices in P_1 or P_2 other than u and v (If it did, then we could find a shorter path connecting vertices in P_1 and P_2 by cutting out the extra vertices in P_3.)

Call the endpoints of P_1 a and b and the endpoints of P_2 c and d. Since u is in P_1, there exists paths from a to u and from b to u. Call the maximum of the two paths P_4. (if u is equal to a (or b), let P_4 be the path from b (or a) to u).

Since v is in P_2, there exists paths from v to c and from v to d. Call the maximum of the two paths P_5. (If v is equal to c (or d), let P_5 be the path from v to d (or c)).

By combining paths P_4, P_3, and P_5 to get the path $P_4 P_3 P_5$, we obtain a path that is longer than P_1 and P_2, thus contradicting the assumption that P_1 and P_2 were paths of maximum length.
Problem 3
Prove that, in any graph, there must exist a path between any vertex with odd degree and some other vertex with odd degree.

Solution:
If there are no vertices with odd degree then the statement is vacuously true. From here, we prove the statement for graphs with at least one vertex with odd degree.

First, we take care of the case where there is only one vertex with odd degree. This case is impossible since there must be an even number of vertices with odd degree.

Thus, we now prove the statement for graphs with at least two vertices with odd degree. Let u be an arbitrary vertex with odd degree.

Case 1: u is the only vertex of odd degree in its connected component. This case is impossible because we know that every graph (and therefore connected component) must have an even number of vertices with odd degree.

Case 2: there is some other vertex w of odd degree in the connected component that contains u. Then there exists a path between u and w, since it is a connected component.

In all (possible) cases we have shown that u is connected by some path to some other vertex of odd degree. Since our original choice of u was arbitrary, every vertex of odd degree must be connected by some path to some other vertex of odd degree.