Recitation Guide - Week 13

Topics Covered: Geometric and Binomial Random Variables, Matchings

Problem 0:

Prove the Memoryless Property for geometric random variables: For a geometric random variable X with parameter p and for $n > 0$,

$$\Pr[X = n + k \mid X > k] = \Pr[X = n]$$

Solution:

$$\Pr[X = n + k \mid X > k] = \frac{\Pr[X = n + k \cap X > k]}{\Pr[X > k]}$$

$$= \frac{\Pr[X = n + k]}{\Pr[X > k]} \quad (\text{since } n > 0)$$

$$= \frac{p(1 - p)^{n+k-1}}{(1 - p)^k}$$

$$= p(1 - p)^{n-1} = \Pr[X = n]$$
Problem 1:
Calculate the expectation of a geometric random variable X with parameter p.

Solution:
First, we need some more mechanics:

Conditional Expectation. The following is the definition of conditional expectation.

$$E[Y \mid Z = z] = \sum_y y \cdot \Pr[Y = y \mid Z = z],$$

where the summation is over all possible values y that the random variable Y can assume.

Law of Total Expectation For any random variables X and Y,

$$E[X] = \sum_y E[X \mid Y = y] \Pr[Y = y]$$

Proof:

$$E[X] = \sum_x x \cdot \Pr[X = x]$$

$$= \sum_x x \cdot \sum_y \Pr[X = x \mid Y = y] \Pr[Y = y]$$

$$= \sum_y \Pr[Y = y] \cdot \sum_x x \cdot \Pr[X = x \mid Y = y]$$

$$= \sum_y \Pr[Y = y] \cdot E[X \mid Y = y]$$

Now let us calculate the expectation of a geometric random variable X using the memoryless property of the geometric random variable. Let Y be a random variable that is 0, if the first flip results in tails and that is 1, if the first flip is a heads.

Using total expectation we have

$$E[X] = E[X \mid Y = 0] \Pr[Y = 0] + E[X \mid Y = 1] \Pr[Y = 1]$$

Let us try to determine $E[X \mid Y = 0]$.

$$E[X \mid Y = 0] = \sum_{x=1}^{\infty} x \cdot \Pr[X = x \mid Y = 0]$$

$$= 1 \cdot \Pr[X = 1 \mid Y = 0]$$

$$+ \sum_{x=2}^{\infty} x \cdot \Pr[X = x \mid Y = 0]$$
Note that $\Pr[X = 1|Y = 0] = 0$ (consider what these events mean):

$$= \sum_{x=2}^{\infty} x \cdot \Pr[X = x|Y = 0]$$

Note that $\Pr[X = x|Y = 0] = \Pr[X = x|X > 1] = \Pr[X = x - 1]$ (by the memoryless property):

$$= \sum_{x=2}^{\infty} x \cdot \Pr[X = x - 1]$$
$$= \sum_{x=1}^{\infty} (x + 1) \cdot \Pr[X = x]$$
$$= \sum_{x=1}^{\infty} x \cdot \Pr[X = x] + \sum_{x=1}^{\infty} \Pr[X = x]$$

$\therefore \ E[X|Y = 0] = E[X] + 1$

Returning to $E[X]$:

$$E[X] = E[X|Y = 0] \Pr[Y = 0] + E[X|Y = 1] \Pr[Y = 1]$$
$$= (E[X] + 1)(1 - p) + 1 \cdot p$$

$\therefore \ pE[X] = 1$
$$E[X] = \frac{1}{p}$$
Problem 2: Prove that any tree has at most one perfect matching.

Solution:

We prove the claim by strong induction on vertices.

Let $P(n)$ be the claim that a tree with n vertices has at most one perfect matching.

Base Cases: $P(1)$ is true, as there is no perfect matching on a single vertex. $P(2)$ is also true, as a tree with two vertices is itself a perfect matching.

Induction Hypothesis: For some integer $k \geq 1$, assume $P(j)$ for all $1 \leq j \leq k$.

Induction Step: Consider a tree $T = (V, E)$ with $k+1$ vertices. We know there exists some leaf ℓ in this graph. Let the only neighbor of ℓ in the graph be v. Because ℓ has one neighbor, any perfect matching of T must have the edge $v - \ell$.

Consider the forest induced by $V \setminus \{v, \ell\}$. Each connected component of this forest is a tree with $\leq k - 1$ vertices. Therefore, by the induction hypothesis, each of these trees has at most one perfect matching. There are now two cases:

Case 1: There is a tree in the forest that does not have a perfect matching.

Because $v - \ell$ must be contained in any matching of T, it must be the case that all other vertices do not share an edge with v in a perfect matching of T. Therefore, all other vertices in T must have matchings in the forest induced by $V \setminus \{v, \ell\}$. If one such tree in the forest does not have a perfect matching, then T does not have a perfect matching, and therefore T still has at most one perfect matching.

Case 2: All trees in the forest have exactly one perfect matching.

If all trees in the forest have exactly one perfect matching, then those unique perfect matchings, along with $v - \ell$ form the unique perfect matching for T. Note that because $v - \ell$ is contained in any perfect matching of T, there can not exist a matching of T where v is connected to another one of its neighbors.

Since T has exactly one perfect matching, it has at most one perfect matching, proving the claim.

Alternate Solution:

Consider an arbitrary tree $T = (V, E)$. Suppose towards contradiction that there exist two distinct matchings, M and M' of T. Consider the subgraph G containing all vertices of T and the edges from both M and M'.

By assumption, there must exist some vertex v in G with degree 2. Consider the connected component that contains v. We claim that no vertex in this connected component can have degree 1. Suppose towards contradiction that some vertex u in this connected component had degree 1. There are two cases for the neighbor of u, say w: either $u - w$ is in both M and M', or $u - v$ is in exactly one of the two. If $u - w$ is in both M and M', then the connected component is just $u - w$, and has no vertex of degree 2, a contradiction. If $u - w$ is in exactly one of M or M', then $u - w$ have an edge in one matching, but u does not have a neighbor in the other matching, since it has degree 1, which is again a contradiction.
Therefore, there exists a connected component in a subgraph of T in which every vertex has degree of 2. From recitation week 10, we know this connected component has a cycle, contradicting that T was a tree. Thus, any tree has at most one perfect matching.