Recitation Guide - Week 2

Topics Covered: Contrapositive, Contradiction, Truth Table, Combinatorial Proof

Problem 1: Let \(a, b \in \mathbb{Z} \) and \(n \) is a positive integer. If \(n \) does not divide \(ab \), then \(n \) does not divide \(a \) and \(n \) does not divide \(b \).

Solution:

The contrapositive: If \(n \) divides \(a \) or \(n \) divides \(b \), then \(n \) divides \(ab \). To prove this, assume \(n|a \) without loss of generality. Then \(a = kn \) for some \(k \in \mathbb{Z} \). Hence \(ab = knb = (kb)n \). Since \(k, b \in \mathbb{Z} \), we know that \(kb \) must be an integer, so \(n|ab \).

Problem 2: Prove that \(\sqrt{6} \) is irrational.

Solution:

We will use a proof by contradiction. Assume for the sake of contradiction that \(\sqrt{6} \) is rational. This means that we can express \(\sqrt{6} \) as the following: \(\frac{a}{b} \) where \(a \) and \(b \) are relatively prime natural numbers and \(b \neq 0 \). This means that \(6 = \frac{a^2}{b^2} \Rightarrow 6b^2 = a^2 \).

If \(6|a^2 \), then \(2|a^2 \) which implies that \(a \) must be even (recall the Lemma proved in Lecture 4). Because \(a \) is even, let \(a = 2c \) where \(c \) is some integer.

\[
\begin{align*}
6b^2 &= a^2 \\
(2)(3)b^2 &= (2c)^2 \\
(2)(3)b^2 &= (2)(2)c^2 \\
3b^2 &= 2c^2
\end{align*}
\]

If \(2|(3b^2) \), then \(2|b^2 \) which implies that \(b \) must be even (see Lemma above). So, clearly, \(a \) and \(b \) are both even. However, this presents a contradiction: \(a \) and \(b \) must be relatively prime natural numbers, and thus cannot both be even (divisible by 2).

Problem 3:

Which of the following are logically equivalent: \(p \land \neg(\neg p \land \neg q) \), \((\neg p \land \neg q) \Rightarrow q \), \(p \lor C \)

Solution:

Consider the following truth tables:
\begin{align*}
|S| &= \sum_{k=0}^{r} \binom{n}{k} \binom{m}{r-k} \\
&= \sum_{k=0}^{r} \binom{n}{k} \binom{m}{r-k}
\end{align*}

which gives us the left hand side of the expression.