
CIS 194: Homework 5
Due Friday, October 3, 2014

No template file is provided for this homework. Download the
Ring.hs and Parser.hs files from the website, and make your HW05.hs
Haskell file with your name, any sources you consulted, and any
other relevant comments (just like in previous assignments). Then,
say

module HW05 where

import Ring

import Parser

and off you go. Do make sure to include this module header, as it
makes grading much easier for us.

Rings

A ring is a mathematical structure obeying certain laws. The Wikipedia
page at http://en.wikipedia.org/wiki/Ring_(mathematics) is a
great introduction. To help frame the concept, it is helpful to know
that the integers form a ring.

A ring has a carrier set R (such as the integers), an addition oper-
ation, and a multiplication operation. In this document, we write the
addition operation with + and the multiplication operation with ×.
The operations obey the following laws:

1. + is associative. That is, (a + b) + c = a + (b + c), for all a, b, and c
in R.

2. There exists a special element 0 ∈ R such that 0 + a = a for all
a ∈ R. 0 is the additive identity.

3. For every element a ∈ R, there exists an element −a such that
−a + a = 0. −a is the additive inverse of a.

4. + is commutative. That is, a + b = b + a for all a, b ∈ R.

5. · is associative. That is, (a · b) · c = a · (b · c) for all a, b, c ∈ R.

6. There exists a special element 1 ∈ R such that 1 · a = a and a · 1 = a
for all a ∈ R. 1 is the multiplicative identity.

7. · distributes over +. That is a · (b + c) = (a · b) + (a · c) and
(b + c) · a = (b · a) + (c · a) for all a, b, c ∈ R.

http://en.wikipedia.org/wiki/Ring_(mathematics)


cis 194: homework 5 2

Note that a ring does not require a multiplicative inverse nor does
it require · to be commutative. (A ring with a multiplicative inverse
for every non-0 element and with a commutative · is called a field, but
that’s a story for another day.)

The Ring class

We can represent a ring in Haskell using a typeclass. Unfortunately,
we can’t represent the laws (that would require dependent types,
which is also a story for another day), but we can represent the oper-
ations, as follows:

class Ring a where

addId :: a -- additive identity

addInv :: a -> a -- additive inverse

mulId :: a -- multiplicative identity

add :: a -> a -> a -- addition

mul :: a -> a -> a -- multiplication

The idea here is that a is analogous to R, the set of elements of
the ring. To help make this concrete, here is the Ring instance for
integers:

instance Ring Integer where

addId = 0

addInv = negate

mulId = 1

add = (+)

mul = (*)

(Those last two lines use operators without applying them to argu-
ments. You can think of it almost as a section with no operands sup-
plied. The first of the lines is equivalent to, for example, add x y = x + y.)

This instance declaration asserts that the integers form a ring with
the given operations and identities.

Now that we have a Ring class, we can write operations that are
generic with respect to which ring we are operating over. For exam-
ples of other rings, see the bottom of the Wikipedia page, or keep
reading.

Parsing

One operation we would like to be able to write once for all rings is
parsing expressions. Any ring supports the idea of expressions like



cis 194: homework 5 3

a + (b * c) + d, and so we should be able to write one parser (that
is, function that converts from a string to a ring object) to produce
them all.

Parsing is a little tricky, and we’re not quite ready to write parsers
yet for homework, so I’ve provided a parser in the Parser.hs mod-
ule. You’re welcome to read the module, but no attempt has been
made to make this code readable to relative newcomers to Haskell —
it’s rather idiomatic advanced Haskell, though.

There’s just one problem, though. The parser needs to be able
to deal with so-called literals: the a, b, c, and d above. For exam-
ple, if your ring is the integers, literals would look like 3 or -2. If
your ring is 2 × 2 matrices, though, literals would look more like
[[1,2][8,-2]].

How to make the parser generic over different literal forms? Use a
typeclass!

class Parsable a where

-- | If successful, ’parse’ returns the thing parsed along with the

-- "leftover" string, containing all of the input string except what

-- was parsed

parse :: String -> Maybe (a, String)

The parse method looks at a string and tries to extract a specific
element. If it can do so, it returns the element extracted and the re-
mainder of the string. This way, parsing can continue. For example,
we might define the Parsable instance for Bool this way:

instance Parsable Bool where

parse str = case stripPrefix "True" str of

Just trueRest -> Just (True, trueRest)

Nothing -> case stripPrefix "False" str of

Just falseRest -> Just (False, falseRest)

Nothing -> Nothing

This uses the stripPrefix function from Data.List. That func-
tion tries to strip the given prefix (the first argument) from the given
list (the second argument). If that list begins with the desired pre-
fix, the prefix is stripped and the remaining list is returned. Other-
wise, stripPrefix returns Nothing. The code above first tries to strip
"True". If it succeeds, then parse succeeds, returning True and the
leftover string. Then, it tries the same for "False".

But, Haskell provides a more idiomatic way of writing this:

instance Parsable Bool where

parse str

| Just rest <- stripPrefix "True" str = Just (True, rest)



cis 194: homework 5 4

| Just rest <- stripPrefix "False" str = Just (False, rest)

| otherwise = Nothing

This version uses a feature called pattern guards, which allow pat-
tern matching in a guard (as introduced by a |). The expression to
the right of the <- is matched against the pattern to the left of the <-.
If that match succeeds, the guard is successful and the expression
to the right of the = is evaluated. Otherwise, we move down to the
next guard. You can mix pattern guards and normal Boolean guards
freely.

Even better than that version is this one:

instance Parsable Bool where

parse = listToMaybe . reads

This last version uses reads, a datatype parser provided as part
of Haskell. This will work for any type that is a member of the Read

type class, such as Bool or Integer. Feel free to look up these func-
tions online to learn more.

The upshot of all of this is that you will have to define Parsable

instances for any type that you want to be parsed.

Forging your own Rings

Exercise 1 Homeworks are starting to get more complicated! Though
we haven’t covered any Haskell testing framework yet (HUnit is prob-
ably the simplest), it’s time to start testing your code. For this assign-
ment, every exercise should be accompanied by a few definitions that
show us that your definitions work. For example, to show that the
definitions for Integer work, I could have these:

intParsingWorks :: Bool

intParsingWorks = (parse "3" == Just (3 :: Integer, "")) &&

(parseRing "1 + 2 * 5" == Just (11 :: Integer)) &&

(addId == (0 :: Integer))

Note that I needed to add type signatures to my numbers to let
GHC know that I wanted to talk about Integer — which has a Ring

instance — and not about other number types, like Int or Double,
which do not have Ring instances.

Now, I can just check that intParsingWorks is True in GHCi.
Make sure to include comments explaining how to use your

testing definitions!



cis 194: homework 5 5

Exercise 2 Modular arithmetic forms a ring. We will be thinking of
the integers modulo 5. This ring has 5 elements: R = {0, 1, 2, 3, 4}.
Addition is like normal integer addition, but it wraps around. So,
3 + 4 = 2 and 1 + 4 = 0. Multiplication is like normal integer
multiplication, but it, too, wraps around. Note that Haskell’s mod

function is very handy here!
Define a datatype

data Mod5 = MkMod Integer

deriving (Show, Eq)

with Ring and Parsable instances. (Your Parsable instance should
parse just like Integer’s.)

Test your instances!

Exercise 3 Matrix arithmetic forms a ring. Write a datatype Mat2x2

(you choose the representation) and Ring and Parsable instances.
Your parser must be able to read something like [[1,2][3,4]] as a
2× 2 matrix. It does not need to allow for the posssibility of spaces.
Writing this idiomatically in Haskell is hard, so we will be more
forgiving about style in the matrix parser.

Test your instances!

Exercise 4 Boolean arithmetic forms a ring. Boolean-and (conjunc-
tion) is the multiplication operation, but Boolean-or is not the addi-
tion operation. What is? (There aren’t too many choices here!) Write
Ring and Parsable instances for Bool.

Test your instances!

One Ring to Rule Them All

Now that we can parse rings of all shapes and sizes, we want to start
taking advantage of the ring laws. To do this, we will parse ring
expressions into a custom datatype designed for manipulating ring
expressions:

data RingExpr a = Lit a

| AddId

| AddInv (RingExpr a)

| MulId

| Add (RingExpr a) (RingExpr a)

| Mul (RingExpr a) (RingExpr a)

deriving (Show, Eq)

instance Ring (RingExpr a) where



cis 194: homework 5 6

addId = AddId

addInv = AddInv

mulId = MulId

add = Add

mul = Mul

instance Parsable a => Parsable (RingExpr a) where

parse = fmap (first Lit) . parse

-- to understand this last function, here are types for ’fmap’ and ’first’:

-- fmap :: (a -> b) -> Maybe a -> Maybe b

-- first :: (a -> b) -> (a, c) -> (b, c)

A RingExpr a holds ring expressions over a given ring a. (So,
RingExpr Integer stores ring expressions over integers.) Because we
have Ring and Parsable instances for RingExpr a, we can parse these
expressions using our trusty parseRing function. Yay!

Having built an expression, we can then evaluate it using the
underlying ring:

-- | Evaluate a ’RingExpr a’ using the ring algebra of ’a’.

eval :: Ring a => RingExpr a -> a

eval (Lit a) = a

eval AddId = addId

eval (AddInv x) = addInv (eval x)

eval MulId = mulId

eval (Add x y) = add (eval x) (eval y)

eval (Mul x y) = mul (eval x) (eval y)

Why bother with RingExpr at all? Because we can use it to simplify
ring expressions according to the ring laws. Provided that Ring in-
stances really obey the laws, these simplifications won’t change the
value retrieved by evaluating the ring expression.

As an example (bogus) simplification, we can write a function that
swaps all additive identities with multiplicative identities. This surely
changes the value of the expression, but it demonstrates the idea of
traversing a RingExpr a and performing a transformation:

swapIdentities :: RingExpr a -> RingExpr a

swapIdentities AddId = MulId

swapIdentities MulId = AddId

-- need other cases to do this *everywhere* in the expression:

swapIdentities (Lit a) = Lit a

swapIdentities (AddInv x) = AddInv (swapIdentities x)



cis 194: homework 5 7

swapIdentities (Add x y) = Add (swapIdentities x) (swapIdentities y)

swapIdentities (Mul x y) = Mul (swapIdentities x) (swapIdentities y)

Note the need for the cases that do not match against AddId or
MulId. These are necessary because other forms of expression might
contain AddId or MulId internally.

Exercise 5 Write distribute that distributes any use of multipli-
cation over addition. Make sure to handle both left-distribution and
right-distribution.

Test your function!

Exercise 6 Write squashMulId that detects whenever you are multi-
plying (on either side) by the multiplicative identity, and remove the
multiplication. To get this working over parsed expressions is a little
tricky, because the parser does not produce MulId. For example, in a
RingExpr Integer, the multiplicative identity would look like Lit 0.
Bonus brownie points1 if you avoid using eval. 1 These are not real points, but it would

make us happy!Test your function!

Exercise 7 (Optional) The distribute and squashMulId functions are
quite similar, in that they traverse over the whole expression to make
changes to specific nodes. Generalize this notion, so that the two
functions can concentrate on just the bit that they need to transform.


	Rings
	Forging your own Rings
	One Ring to Rule Them All

