
CIS 194: Homework 8
Due Friday, 31 October

• Files you should submit: HW08.hs.

Finger exercises

Having just learned about monads and list comprehensions, the next
few exercises are an opportunity to show off what you’ve learned.
These are meant to be straightforward.

Exercise 1 Write a function that detects whether or not a string has
a certain format. The required format is as follows:

1. The string starts with a digit.

2. Say the value of this digit is n. The string next contains n as.

3. After the n as, either the string ends or the sequence repeats,
starting with a (perhaps different) digit.

Here are some strings that match this format and some that don’t:

Good strings Bad strings
3aaa2aa 3aaa2a

9aaaaaaaaa 10aaaaaaaaaa

0 1

001a 100a

2aa2aa 2bb2bb

Your function should use the Maybe monad. It should look like
this:

stringFitsFormat :: String -> Bool

stringFitsFormat = isJust . go

where go :: String -> Maybe String

-- go evaluates to ‘Just ""‘ on success, or Nothing otherwise

...

Hint: Use readMaybe :: Read a => String -> Maybe a from
Text.Read and stripPrefix :: Eq a => [a] -> [a] -> Maybe [a]

from Data.List.

Exercise 2
Use a list comprehension to produce the list of all numbers be-

tween 1 and 100 (inclusive) that are divisible by 5 but not by 7.

specialNumbers :: [Int]



cis 194: homework 8 2

Risk

The game of Risk involves two or more players, each vying to “con-
quer the world” by moving armies around a board representing the
world and using them to conquer territories. The central mechanic of
the game is that of one army attacking another, with dice rolls used
to determine the outcome of each battle.

The rules of the game make it complicated to determine the like-
lihood of possible outcomes. In this assignment, you will write a
simulator which could be used by Risk players to estimate the proba-
bilities of different outcomes before deciding on a course of action.

The StdRand monad

Since battles in Risk are determined by rolling dice, your simula-
tor will need some way to access a source of non-determinism,
called a random generator. (See HW07 for a discussion of pseudo-
randomness.) You will have to get many pseudo-random numbers
out of your random generator, and keep track of the way that the ran-
dom generator changes as you query it for more randomness. This
sounds like the perfect time to use a monad! The monad will keep
the random generator for you and allow you to sequence queries.

The MonadRandom package provides just such a monad. If you
don’t already have it installed, just say cabal install MonadRandom

at your command line. You can see the documentation here: http:
//hackage.haskell.org/package/MonadRandom-0.3

You import the gubbins from that package with import Control.Monad.Random.
You can find the type Rand in that package, which defines a random-
ness monad for any type of random generator g. For this homework,
we won’t need to fiddle with the type of the generator — we’ll just
use the StdGen standard random generator. Thus, put the following Allowing flexibility in random genera-

tors is a good idea, in general, though.
Certain computers have specialized
hardware for producing randomness,
and might provide a custom random
generator. And, Cryptographic pro-
grams have very specific requirements
for randomness and may use advanced
algorithms for producing even better
random numbers.

line in your file to get rid of this extra parameter, unnecessary for our
purposes:

type StdRand = Rand StdGen

The type StdRand is a monad, and it is also a member of the
MonadRandom class, documented in the Control.Monad.Random.Class

package.1 Specifically, you can use the getRandomR function when 1 You don’t need to import that ex-
plicitly, because it’s re-exported by
Control.Monad.Random. You can
see this re-export in the documen-
tation for Control.Monad.Random
by the appearance of
module Control.Monad.Random.Class

at the top. This note means
that all names exported by
Control.Monad.Random.Class are
exported by Control.Monad.Random as
well.

you are operating in the StdRand monad. That function is the only
monadic function we will be using in this assignment.

Take another look at the documentation for the Control.Monad.Random

module, which defines various ways to “run” a Rand computation; in
particular you will eventually (at the very end of the assignment)
need to use the evalRandIO function.

http://hackage.haskell.org/package/MonadRandom-0.3
http://hackage.haskell.org/package/MonadRandom-0.3


cis 194: homework 8 3

The Rules of Battle

The rules of attacking in Risk are as follows.

• There is an attacking army (containing some number of units) and
a defending army (containing some number of units).

• The attacking player may attack with up to three units at a time.
However, they must always leave at least one unit behind. That
is, if they only have three total units in their army they may only
attack with two, and so on.

• The defending player may defend with up to two units (or only
one if that is all they have).

• To determine the outcome of a single battle, the attacking and
defending players each roll one six-sided die for every unit they
have attacking or defending. So the attacking player rolls one, two,
or three dice, and the defending player rolls one or two dice.

• The attacking player sorts their dice rolls in descending order. The
defending player does the same.

• The dice are then matched up in pairs, starting with the highest
roll of each player, then the second-highest.

• For each pair, if the attacking player’s roll is higher, then one of
the defending player’s units die. If there is a tie, or the defending
player’s roll is higher, then one of the attacking player’s units die.

For example, suppose player A has 3 units and player B has 5. A
can attack with only 2 units, and B can defend with 2 units. So A
rolls 2 dice, and B does the same. Suppose A rolls a 3 and a 5, and B
rolls a 4 and a 3. After sorting and pairing up the rolls, we have

A B
5 4

3 3

A wins the first matchup (5 vs. 4), so one of B’s units dies. The sec-
ond matchup is won by B, however (since B wins ties), so one of A’s
units dies. The end result is that now A has 2 units and B has 4. If
A wanted to attack again they would only be able to attack with 1

unit (whereas B would still get to defend with 2—clearly this would
give B an advantage because the higher of B’s two dice rolls will get
matched with A’s single roll.)



cis 194: homework 8 4

Some types

Include the following type definitions:

type Army = Int

data ArmyCounts = ArmyCounts { attackers :: Army, defenders :: Army }

deriving Show

type DieRoll = Int

Exercise 3
Write an action

dieRoll :: StdRand DieRoll

that simulates rolling a fair, 6-sided die.
(You can test your function in GHCi using evalRandIO.)

Exercise 4
Write a function

battleResults :: [DieRoll] -> [DieRoll] -> ArmyCounts

that takes the attacker’s dice rolls and the defender’s dice rolls and
computes the change in the number of armies resulting from the rolls.

Example:

battleResults [3,6,4] [5,5] == ArmyCounts { attackers = -1, defenders = -1 }

Example:

battleResults [3,6,4] [5,6] == ArmyCounts { attackers = -2, defenders = 0 }

Example:

battleResults [4] [3,2] == ArmyCounts { attackers = 0, defenders = -1 }

Hint: This function (and the next) can be much simplified if you
write and use a Monoid instance for ArmyCounts. Monoids are every-
where!

Exercise 5 Write a function

battle :: ArmyCounts -> StdRand ArmyCounts

which simulates a single battle (as explained above) between two
opposing armies. That is, it should simulate randomly rolling the



cis 194: homework 8 5

appropriate number of dice, interpreting the results, and updating
the two armies to reflect casualties. You may assume that each player
will attack or defend with the maximum number of units they are
allowed.

Exercise 6 Of course, usually an attacker does not stop after just
a single battle, but attacks repeatedly in an attempt to destroy the
entire defending army (and thus take over its territory).

Now implement a function

invade :: ArmyCounts -> StdRand ArmyCounts

which simulates an entire invasion attempt: that is, repeated calls
to battle until there are no defenders remaining, or fewer than two
attackers.

Exercise 7 Finally, implement a function

successProb :: ArmyCounts -> StdRand Double

which runs invade 1000 times, and uses the results to compute a
Double between 0 and 1 representing the estimated probability that
the attacking army will completely destroy the defending army.
For example, if the defending army is destroyed in 300 of the 1000
simulations (but the attacking army is reduced to 1 unit in the other
700), successProb should return 0.3.

You will likely need this function, provided as we haven’t talked
much about numeric conversions:

(//) :: Int -> Int -> Double

a // b = fromIntegral a / fromIntegral b


	Finger exercises
	Risk

