CIS 194: Homework 7
Due Monday, March 11

¢ Files you should submit: JoinList.hs and Scrabble.hs, contain-
ing modules of the same name.

The First Word Processor

As everyone knows, Charles Dickens was paid by the word." What
most people don’t know, however, is the story of you, the trusty
programming assistant to the great author.

In your capacity as Dickens’s assistant, you program and oper-
ate the steam-powered Word Processing Engine which was given to
him as a thoughtful birthday gift from his friend Charles Babbage.?
To be helpful, you are developing a primitive word processor the
author can use not only to facilitate his craft, but also to ease the ac-
counting.3 What you have done is build a word processor that keeps
track of the total number of words in a document while it is being
edited. This is really a great help to Mr. Dickens as the publishers use
this score to determine payment, but you are not satisfied with the
performance of the system and have decided to improve it.

Editors and Buffers

You have a working user interface for the word processor imple-
mented in the file Editor.hs. The Editor module defines function-
ality for working with documents implementing the Buffer type
class found in Buffer.hs. Take a look at Buffer.hs to see the oper-
ations that a document representation must support to work with
the Editor module. The intention of this design is to separate the

* Actually, this is a myth.

2 Unlike the rest of this story, the fact
that Dickens and Babbage were friends
is 100% true. If you don’t believe it,
just do a Google search for “Dickens
Babbage”.

3 Of course, all of your programming

is actually done by assembling steam
pipes and valves and shafts and gears
into machines which perform the
desired computations; but as a mental
shortcut you have taken to thinking in
terms of a higher-order lazy functional
programming language and compiling
down to steam and gears as necessary.
In this assignment we will stick to the
purely mental world, but of course you
should keep in mind that we could
compile everything into Steam-Powered
Engines if we wanted to.



CIS 194: HOMEWORK 7 2

front-end interface from the back-end representation, with the type
class intermediating the two. This allows for the easy swapping of
different document representation types without having to change
the Editor module.

The editor interface is as follows:

e v — view the current location in the document
® n — move to the next line

® p — move to the previous line

e 1 —load a file into the editor

e e — edit the current line

* q— quit

e ? — show this list of commands

To move to a specific line, enter the line number you wish to nav-
igate to at the prompt. The display shows you up to two preceding
and two following lines in the document surrounding the current
line, which is indicated by an asterisk. The prompt itself indicates the
current value of the entire document.

The first attempt at a word processor back-end was to use a single
String to represent the entire document. You can see the Buffer
instance for String in the file StringBuffer.hs. Performance isn’t
great because reporting the document score requires traversing every
single character in the document every time the score is shown! Mr.
Dickens demonstrates the performance issues with the following
(imaginary) editor session:

$ runhaskell StringBufEditor.hs
33> n

0: This buffer is for notes you don’t want to save, and for
*1: evaluation of steam valve coefficients.

2: To load a different file, type the character L followed

3: by the name of the file.
33> 1 carol.txt
31559> 3640

3638:

3639: "An intelligent boy!" said Scrooge. "A remarkable boy!
*3640: Do you know whether they’ve sold the prize Turkey that
3641: was hanging up there?--Not the little prize Turkey: the
3642: big one?"

31559> e

Replace line 3640: Do you know whether they’ve sold the prize Goose that



31559> n

3639: "An intelligent boy!" said Scrooge. "A remarkable boy!
3640: Do you know whether they’ve sold the prize Goose that
*3641: was hanging up there?--Not the little prize Turkey: the
3642: big one?"

3643:

31559> e

Replace line 3641: was hanging up there?--Not the little one: the
31558> v

3639: "An intelligent boy!" said Scrooge. "A remarkable boy!
3640: Do you know whether they’ve sold the prize Goose that
*3641: was hanging up there?--Not the little one: the

3642: big one?"

3643:

31559> q

Sure enough, there is a small delay every time the prompt is
shown.

You have chosen to address the issue by implementing a light-
weight, tree-like structure, both for holding the data and caching the
metadata. This data structure is referred to as a join-list. A data type
definition for such a data structure might look like this:

data JoinListBasic a = Empty
| Single a
| Append (JoinListBasic a) (JoinListBasic a)

The intent of this data structure is to directly represent append
operations as data constructors. This has the advantage of making
append an 0(1) operation: sticking two JoinLists together simply
involves applying the Append data constructor. To make this more
explicit, consider the function

jlbToList :: JoinListBasic a -> [a]
jlbToList Empty =[]
jlbToList (Single a) = [a]

jlbToList (Append 11 12) jlbToList 11 ++ jlbTolList 12

If j1is a JoinList, we can think of it as a representation of the list
jlbToList j1 where some append operations have been “deferred”.
For example, the join-list shown in Figure 1 corresponds to the list
L'y’ a’', 'h'l.

Such a structure makes sense for text editing applications as it

rar ’

€,

provides a way of breaking the document data into pieces that can
be processed individually, rather than having to always traverse the
entire document. This structure is also what you will be annotating
with the metadata you want to track.

CIS 194: HOMEWORK 7 3



CIS 194: HOMEWORK 7 4

Monoidally Annotated Join-Lists

The JoinList definition to use for this assignment is

data JoinList m a = Empty
| Single m a
| Append m (JoinList m a) (JoinList m a)
deriving (Eq, Show)

You should copy this definition into a Haskell module named JoinList.hs.
The m parameter will be used to track monoidal annotations to the

structure. The idea is that the annotation at the root of a JoinList

will always be equal to the combination of all the annotations on

the Single nodes (according to whatever notion of “combining” is

defined for the monoid in question). Empty nodes do not explicitly

store an annotation, but we consider them to have an annotation of

mempty (that is, the identity element for the given monoid).
For example,

Append (Product 210)

(Append (Product 30)
(Single (Product 5) 'y’)
(Append (Product 6)

(Single (Product 2) ’'e’)
(Single (Product 3) 'a’)))
(Single (Product 7) 'h’")

is a join-list storing four values: the character 'y’ with annotation

5, the character 'e’ with annotation 2, 'a’ with annotation 3, and
"h’ with annotation 7. (See Figure 1 for a graphical representation of
the same structure.) Since the multiplicative monoid is being used,
each Append node stores the product of all the annotations below it.

The point of doing this is that all the subcomputations needed to

compute the product of all the annotations in the join-list are cached.

If we now change one of the annotations, say, the annotation on 'y’,

we need only recompute the annotations on nodes above it in the

tree. In particular, in this example we don’t need to descend into the ' '
subtree containing 'e’ and ’a’, since we have cached the fact that © a
their product is 6. This means that for balanced join-lists, it takes Figure 1: A sample join-list annotated
only O(log n) time to rebuild the annotations after making an edit. with products

Exercise 1 We first consider how to write some simple operations
on these JoinLists. Perhaps the most important operation we will
consider is how to append two JoinLists. Previously, we said that
the point of JoinLists is to represent append operations as data, but
what about the annotations? Write an append function for JoinLists



CIS 194: HOMEWORK 7 5

that yields a new JoinList whose monoidal annotation is derived
from those of the two arguments.

(+++) :: Monoid m => JoinList m a -> JoinList m a -> JoinList m a
You may find it helpful to implement a helper function
tag :: Monoid m => JoinList m a ->m

which gets the annotation at the root of a JoinList.

Exercise 2 The first annotation to try out is one for fast indexing
into a JoinList. The idea is to cache the size (number of data ele-
ments) of each subtree. This can then be used at each step to deter-
mine if the desired index is in the left or the right branch.

We have provided the Sized module that defines the Size type,
which is simply a newtype wrapper around an Int. In order to make
Sizes more accessible, we have also defined the Sized type class
which provides a method for obtaining a Size from a value.

Use the Sized type class to write the following functions.

1. Implement the function

indexJ :: (Sized b, Monoid b) =>
Int -> JoinList b a -> Maybe a

indexJ finds the JoinList element at the specified index. If the
index is out of bounds, the function returns Nothing. By an index
in a JoinList we mean the index in the list that it represents. That
is, consider a safe list indexing function

(''?) :: [a] -> Int -> Maybe a

[] e = Nothing
_ 117 1 | 1 <0 = Nothing
(x:xs) 1?2 0 = Just x

(x:xs) "7 1 xs !1? (i-1)

which returns Just the ith element in a list (starting at zero) if
such an element exists, or Nothing otherwise. We also consider
an updated function for converting join-lists into lists, just like

j1lbToList but ignoring the monoidal annotations: Note: you do not have to include (!!7?)
and jlToList in your assignment; they
jlToList :: JoinList m a -> [a] are just to help explain how indexJ]
jlToList Empty =[] ought to behave. However, you may

certainly use them to help test your
[a] implementations if you wish.

jlToList 11 ++ jlTolList 12

jlToList (Single _ a)
jlToList (Append _ 11 12)



CIS 194: HOMEWORK 7 6

We can now specify the desired behavior of indexJ. For any index
i and join-list j1, it should be the case that

(indexJ i jl) == (jlToList jl !!? i)

That is, calling indexJ on a join-list is the same as first convert-
ing the join-list to a list and then indexing into the list. The point,
of course, is that indexJ can be more efficient (O(logn) versus
O(n), assuming a balanced join-list), because it gets to use the size
annotations to throw away whole parts of the tree at once, whereas
the list indexing operation has to walk over every element.

2. Implement the function

dropJ :: (Sized b, Monoid b) =>
Int -> JoinList b a -> JoinList b a

The dropJ function drops the first n elements from a JoinList.
This is analogous to the standard drop function on lists. Formally,
dropJ should behave in such a way that

jlToList (dropJ n jl) == drop n (jlToList j1).
3. Finally, implement the function

taked :: (Sized b, Monoid b) =>
Int -> JoinList b a -> JoinList b a

The takel function returns the first n elements of a JoinList,
dropping all other elements. Again, this function works similarly
to the standard library take function; that is, it should be the case
that

jlToList (takeld n jl) == take n (jlToList jl).

Ensure that your function definitions use the size function from
the Sized type class to make smart decisions about how to descend
into the JoinList tree.

Exercise 3 Mr. Dickens’s publishing company has changed their

minds. Instead of paying him by the word, they have decided to pay

him according to the scoring metric used by the immensely popular

game of Scrabble™. You must therefore update your editor imple- Scrabble™, of course, was invented in

mentation to count Scrabble scores rather than counting words. 1842, by Dr. Wilson P. Scrabble™.
Hence, the second annotation you decide to implement is one

to cache the Scrabble™ score for every line in a buffer. Create a

Scrabble module that defines a Score type, a Monoid instance for

Score, and the following functions:



CIS 194: HOMEWORK 7 7

score :: Char -> Score
scoreString :: String -> Score

The score function should implement the tile scoring values as
shown at http://www.thepixiepit.co.uk/scrabble/rules.html; any
characters not mentioned (punctuation, spaces, etc.) should be given
zero points.

To test that you have everything working, add the line import Scrabble
to the import section of your JoinList module, and write the follow-
ing function to test out JoinLists annotated with scores:

scoreLine :: String -> JoinList Score String

Example:

*JoinList> scoreLine "yay " +++ scoreLine "haskell!"
Append (Score 23)

(Single (Score 9) "yay ")

(Single (Score 14) "haskell!")

Exercise 4 Finally, combine these two kinds of annotations. A pair
of monoids is itself a monoid:

instance (Monoid a, Monoid b) => Monoid (a,b) where
mempty = (mempty, mempty)
mappend (al,bl) (a2,b2) = (mappend al a2, mappend bl b2)

(This instance is defined in Data.Monoid.) This means that join-lists
can track more than one type of annotation at once, in parallel, sim-
ply by using a pair type.

Since we want to track both the size and score of a buffer, you

should provide a Buffer instance for the type Note that you will have to en-
able the FlexibleInstances and
TypeSynonymInstances extensions.

JoinList (Score, Size) String.
Due to the use of the Sized type class, this type will continue to work
with your functions such as indexJ.

Finally, make a main function to run the editor interface using
your join-list backend in place of the slow String backend (see
StringBufEditor.hs for an example of how to do this). You should
create an initial buffer of type JoinList (Score, Size) String and
pass it as an argument to runEditor editor. Verify that the editor
demonstration described in the section “Editors and Buffers” does
not exhibit delays when showing the prompt.



	The First Word Processor
	Editors and Buffers
	Monoidally Annotated Join-Lists

