
CIS 194: Homework 7
Due Friday, 24 October

It’s all about being lazy.

http://www.ritzgroup.org/index.php/friday-links-is-too-lazy-to-go-downstairs-and-get-a-a-sandwich/

Start off your homework in HW07.hs with the usual module header
of module HW07 where.

Fibonacci numbers

The Fibonacci numbers Fn are defined as the sequence of integers,
beginning with 0 and 1, where every integer in the sequence is the
sum of the previous two. That is,

F0 = 0

F1 = 1

Fn = Fn−1 + Fn−2 (n ≥ 2)

For example, the first fifteen Fibonacci numbers are

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, . . .

It’s quite likely that you’ve heard of the Fibonacci numbers before.
The reason they’re so famous probably has something to do with the
simplicity of their definition combined with the astounding variety of

http://www.ritzgroup.org/index.php/friday-links-is-too-lazy-to-go-downstairs-and-get-a-a-sandwich/


cis 194: homework 7 2

ways that they show up in various areas of mathematics as well as art
and nature.

Exercise 1
Translate the above definition of Fibonacci numbers directly into a

recursive function definition of type

fib :: Integer -> Integer

so that fib n computes the nth Fibonacci number Fn.
Now use fib to define the infinite list of all Fibonacci numbers,

fibs1 :: [Integer]

(Hint: You can write the list of all positive integers as [0..].)
Try evaluating fibs1 at the ghci prompt. You will probably get

bored watching it after the first 30 or so Fibonacci numbers, because
fib is ridiculously slow. Although it is a good way to define the Fi-
bonacci numbers, it is not a very good way to compute them—in order
to compute Fn it essentially ends up adding 1 to itself Fn times! For
example, shown at right is the tree of recursive calls made by evaluat-
ing fib 5.

fib 1

fib 0
fib 1

fib 2

fib 3

fib 0
fib 1

fib 2

fib 1

fib 0
fib 1

fib 2

fib 3

fib 4

fib 5

As you can see, it does a lot of repeated work. In the end, fib
has running time O(Fn), which (it turns out) is equivalent to O(ϕn),
where ϕ = 1+

√
5

2 is the “golden ratio”. That’s right, the running time
is exponential in n. What’s more, all this work is also repeated from
each element of the list fibs1 to the next. Surely we can do better.

Exercise 2
When I said “we” in the previous sentence I actually meant “you”.

Your task for this exercise is to come up with more efficient imple-
mentation. Specifically, define the infinite list

fibs2 :: [Integer]

so that it has the same elements as fibs1, but computing the first n
elements of fibs2 requires only (roughly) n addition operations.

Of course there are several billion
Haskell implementations of the Fi-
bonacci numbers on the web, and I have
no way to prevent you from looking
at them; but you’ll probably learn a
lot more if you try to come up with
something yourself first.

Hint: You know that the list of Fibonacci numbers starts with 0
and 1, so fibs2 = [0,1] ++ is a great start. The thing after the ++

will have to mention fibs2, of course, because subsequent Fibonacci
numbers are built using previous ones. Oh, and zipWith and tail

will be helpful, too. (Why is tail here OK?)

Streams

We can be more explicit about infinite lists by defining a type Stream

representing lists that must be infinite. (The usual list type represents



cis 194: homework 7 3

lists that may be infinite but may also have some finite length.)
In particular, streams are like lists but with only a “cons” constructor—

whereas the list type has two constructors, [] (the empty list) and
(:) (cons), there is no such thing as an empty stream. So a stream is
simply defined as an element followed by a stream:

data Stream a = Cons a (Stream a)

Exercise 3
Write a function to convert a Stream to an infinite list,

streamToList :: Stream a -> [a]

Exercise 4 To test your Stream functions in the succeeding exercises,
it will be useful to have an instance of Show for Streams. However, if
you put deriving Show after your definition of Stream, as one usually
does, the resulting instance will try to print an entire Stream—which,
of course, will never finish. Instead, make your own instance of Show
for Stream,

instance Show a => Show (Stream a) where

show ...

which works by showing only some prefix of a stream (say, the first
20 elements). Hint: you may find your streamToList

function useful.

Exercise 5
Let’s create some simple tools for working with Streams.

a) Write a function

streamRepeat :: a -> Stream a

which generates a stream containing infinitely many copies of the
given element.

b) Write a function

streamMap :: (a -> b) -> Stream a -> Stream b

which applies a function to every element of a Stream.

c) Write a function

streamFromSeed :: (a -> a) -> a -> Stream a



cis 194: homework 7 4

which generates a Stream from a “seed” of type a, which is the
first element of the stream, and an “unfolding rule” of type
a -> a which specifies how to transform the seed into a new
seed, to be used for generating the rest of the stream.

Example:

streamToList (streamFromSeed (’x’ :) "o") == ["o", "xo", "xxo", "xxxo", "xxxxo", ... ]

Exercise 6
Now that we have some tools for working with streams, let’s cre-

ate a few:

a) Define the stream

nats :: Stream Integer

which contains the infinite list of natural numbers 0, 1, 2, . . .

b) Define the stream

ruler :: Stream Integer

which corresponds to the ruler function

0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, . . .

where the nth element in the stream (assuming the first element
corresponds to n = 1) is the largest power of 2 which evenly
divides n. Hint: define a function

interleaveStreams which alternates
the elements from two streams. Can
you use this function to implement
ruler in a clever way that does not have
to do any divisibility testing?

Another Hint: You will want
interleaveStreams to be lazy in its
second parameter. Why?

Random numbers

The next section will require a pseudo-random list of numbers. The
exercises in this section will help you generate them.

This section is based on the System.Random module. If you don’t
have this module available, just cabal install random.1 1 It seems that the documentation

generation bot on hackage.haskell.org

is having a rough time of things. Go
to this version to see the (old, but
still useful) documentation: http:
//hackage.haskell.org/package/

random-1.0.1.3

Computers are determinstic machines. That is, a computer will
blindly follow the sequence of instructions given to it, and there is no
way a computer does anything without a sequence of instructions.
Yet, sometimes, we humans like spontaneity. We want our computers
to produce random numbers—except that determinism tells us this is
impossible.

Of course, there is no such thing as a random number. For ex-
ample, is 33 random? No, it’s the sum of the birthday dates of my

http://hackage.haskell.org/package/random-1.0.1.3
http://hackage.haskell.org/package/random-1.0.1.3
http://hackage.haskell.org/package/random-1.0.1.3


cis 194: homework 7 5

wife and me. But, there can be such a thing as a random sequence of
numbers, which is a sequence such that the next number can not be
predicted by knowing what numbers have come before.

Computers can only approximate generating random sequences.
They do so by following a hard-to-predict, yet completely determin-
istic process. That’s why we say computers produce pseudo-random
sequences. (Pseudo- is a Greek prefix meaning “fake”.)

Further complicating matters from an implementation standpoint
(but rather clarifying them from a theoretical one), Haskell’s purity
means that we cannot have a function rand :: Int that produces
numbers from a random sequence. Instead, we need a notion of a
random number generator, which is some data structure that stores
enough information to produce a pseudo-random sequence. Accord-
ing to the System.Random module, such a random number generator
is a member of the RandomGen type class.

System.Random also gives us the Random type class, which includes
a variety of types for which random generation is possible. Happily
for us, Int is in the Random class.

Exercise 7
Write a function

randomList :: (Random a, RandomGen g) => g -> [a]

that produces an infinite pseudo-random sequence of as given a
generator of type g. The random function will be helpful.

Exercise 8
Write a function

randomInts :: Int -> [Int]

such that randomInts n is a pseudo-random sequence of Ints, with
length n. The members of this sequence can range over the full range
of Ints. (You can say minBound :: Int and maxBound :: Int to see
the limits of this range, but these functions aren’t necessary in your
randomInts implementation.)

Use mkStdGen and choose your favorite number to be the seed. The
choice of seed is irrelevant, but the fact that it’s the same between
runs means that your pseudo-random sequence will be the same
between runs, which is generally helpful.

Profiling

It’s wonderful to be lazy, but laziness occasionally gets in the way of
productive work.



cis 194: homework 7 6

Say I want to calculate both the maximum and minimum values of
a list of Ints:

minMax :: [Int] -> Maybe (Int, Int)

minMax [] = Nothing -- no min or max if there are no elements

minMax xs = Just (minimum xs, maximum xs)

Exercise 9 Use minMax to find the minimum and maximum of a See the week 7 lecture notes for more
details about profiling.pseudo-random sequence of 1, 000, 000 Ints. Then, print out these

values from a main action. Now, compile your program, enabling
RTS options (ghc HW07.hs -rtsopts -main-is HW07),2 and run your 2 GHC normally requires that your main

action be in a module named Main.
However, this would cause havoc with
our autograde system, and so we’re
asking that your homework be in a
module named HW07. To tell GHC to
run the main function from the HW07

module—not the Main module—you say
-main-is HW07.

program to see how much memory it takes. (./HW07 +RTS -s or
HW07.exe +RTS -s on Windows) It should be a lot. Record the “total
memory in use” figure in a comment in your source file.

Then, run your program to see its heap profile, like this:

> ./HW07 +RTS -h -i0.001

> hp2ps -c HW07.hp

(or, for Windows users running at the Windows command prompt
cmd.exe:

> HW07.exe +RTS -h -i0.001

> hp2ps -c HW07.hp

)
This will create a HW07.ps file, which can be viewed by most mod-

ern PDF readers. Check it out. Include this HW07.ps file with your
submission.

Exercise 10 As written, minMax does not take advantage of Haskell’s
laziness, because it calculates the maximum of xs and the minimum
of xs separately. The running program must remember all of xs
between these calculations. But, with a rewrite, minMax can calculate
both the minimum and maximum on the fly, and your program will
never need to store the whole list. Implement this better version, run
with +RTS -s, and include the improved memory footprint (the “total
memory in use” is the one that matters!) in a comment.

Fibonacci numbers via matrices (extra credit)

It turns out that it is possible to compute the nth Fibonacci number
with only O(log n) (arbitrary-precision) arithmetic operations. This
section explains one way to do it.



cis 194: homework 7 7

Consider the 2× 2 matrix F defined by

F =

[
1 1
1 0

]
.

Notice what happens when we take successive powers of F (see
http://en.wikipedia.org/wiki/Matrix_multiplication if you
forget how matrix multiplication works):

F2 =

[
1 1
1 0

] [
1 1
1 0

]
=

[
1 · 1 + 1 · 1 1 · 1 + 1 · 0
1 · 1 + 0 · 1 1 · 1 + 0 · 0

]
=

[
2 1
1 1

]

F3 =

[
2 1
1 1

] [
1 1
1 0

]
=

[
3 2
2 1

]

F4 =

[
3 2
2 1

] [
1 1
1 0

]
=

[
5 3
3 2

]

F5 =

[
5 3
3 2

] [
1 1
1 0

]
=

[
8 5
5 3

]

Curious! At this point we might well conjecture that Fibonacci num-
bers are involved, namely, that

Fn =

[
Fn+1 Fn

Fn Fn−1

]

for all n ≥ 1. Indeed, this is not hard to prove by induction on n.
The point is that exponentiation can be implemented in logarith-

mic time using a binary exponentiation algorithm. The idea is that to
compute xn, instead of iteratively doing n multiplications of x, we
compute

xn =

(xn/2)2 n even

x · (x(n−1)/2)2 n odd

where xn/2 and x(n−1)/2 are recursively computed by the same
method. Since we approximately divide n in half at every iteration,
this method requires only O(log n) multiplications.

The punchline is that Haskell’s exponentiation operator (^) already
uses this algorithm, so we don’t even have to code it ourselves!

http://en.wikipedia.org/wiki/Matrix_multiplication


cis 194: homework 7 8

Exercise 11 (Optional)

• Create a type Matrix which represents 2× 2 matrices of Integers.

• Make an instance of the Num type class for Matrix. In fact, you only
have to implement the (*) method, since that is the only one we
will use. (If you want to play around with matrix operations a bit
more, you can implement fromInteger, negate, and (+) as well.) Don’t worry about the warnings telling

you that you have not implemented the
other methods. (If you want to disable
the warnings you can add

{-# OPTIONS_GHC -fno-warn-missing-methods #-}

to the top of your file.)

• We now get fast (logarithmic time) matrix exponentiation for free,
since (^) is implemented using a binary exponentiation algorithm
in terms of (*). Write a function

fib4 :: Integer -> Integer

which computes the nth Fibonacci number by raising F to the nth
power and projecting out Fn (you will also need a special case
for zero). Try computing the one millionth or even ten millionth
Fibonacci number. On my computer the millionth Fi-

bonacci number takes only 0.32 seconds
to compute but more than four seconds
to print on the screen—after all, it has
just over two hundred thousand digits.


	Fibonacci numbers
	Streams
	Random numbers
	Profiling
	Fibonacci numbers via matrices (extra credit)

