
CIS 194: Homework 3
Due Monday, Feburary 4

Code golf!

This assignment is simple: there are three tasks listed below. For
each task, you should submit a Haskell function with the required
name and type signature which accomplishes the given task and is as
short as possible.

Rules

• Along with your solution for each task you must include a com-
ment explaining your solution and how it works. Solutions with-
out an explanatory comment will get a score of zero. Your com-
ment should demonstrate a complete understanding of your solu-
tion. In other words, anything is fair game but you must demon-
strate that your understand how it works. If in doubt, include
more detail.

• Comments do not count towards the length of your solutions.

• Type signatures do not count towards the length of your solutions.

• import statements do not count towards the length of your so-
lutions. You may import any modules included in the Haskell
Platform.

• Whitespace does not count towards the length of your solutions.
So there is no need to shove all your code onto one line and take
all the spaces out. Use space as appropriate, indent nicely, etc., but
otherwise try making your code as short as you can.

cis 194: homework 3 2

• You are welcome to include additional functions beyond the ones
required. That is, you are welcome to break up your solutions into
several functions if you wish (indeed, sometimes this may lead to
a very short solution). Of course, such additional functions will be
counted towards the length of your solution (excluding their type
signatures).

• Your final submission should be named Golf.hs. Your file should
define a module named Golf, that is, at the top of your file you
should have

module Golf where

• The three shortest solutions (counting the total number of charac-
ters, excluding whitespace and the other exceptions listed above)
for each task will receive two points of extra credit each. You can
get up to a total of four extra credit points.

• Otherwise, the length does not really matter; long but correct
solutions will receive full credit for correctness (although they may
or may not get full credit for style, depending on their style).

Hints

• Use functions from the standard libraries as much as possible—
that’s part of the point of this assignment. Using (say) map is much
shorter than implementing it yourself!

• In particular, try to use functions from the standard libraries that
encapsulate recursion patterns, rather than writing explicitly recur-
sive functions yourself.

• You may want to start by getting something that works, without
worrying about the length. Once you have solved the task, try to
figure out ways to make your solution shorter.

• If the specification of a task is unclear, feel free to ask for a clarifi-
cation on Piazza.

• We will test your functions on other inputs besides the ones given
as examples, so to be safe, so should you!

Tasks

Exercise 1 Hopscotch
Your first task is to write a function

cis 194: homework 3 3

skips :: [a] -> [[a]]

The output of skips is a list of lists. The first list in the output should
be the same as the input list. The second list in the output should
contain every second element from the input list. . . and the nth list in
the output should contain every nth element from the input list.

For example:

skips "ABCD" == ["ABCD", "BD", "C", "D"]

skips "hello!" == ["hello!", "el!", "l!", "l", "o", "!"]

skips [1] == [[1]]

skips [True,False] == [[True,False], [False]]

skips [] == []

Note that the output should be the same length as the input.

Exercise 2 Local maxima
A local maximum of a list is an element of the list which is strictly

greater than both the elements immediately before and after it. For
example, in the list [2,3,4,1,5], the only local maximum is 4, since
it is greater than the elements immediately before and after it (3 and
1). 5 is not a local maximum since there is no element that comes
after it.

Write a function

localMaxima :: [Integer] -> [Integer]

which finds all the local maxima in the input list and returns them in
order. For example:

localMaxima [2,9,5,6,1] == [9,6]

localMaxima [2,3,4,1,5] == [4]

localMaxima [1,2,3,4,5] == []

Exercise 3 Histogram
For this task, write a function

histogram :: [Integer] -> String

which takes as input a list of Integers between 0 and 9 (inclusive),
and outputs a vertical histogram showing how many of each number
were in the input list. You may assume that the input list does not
contain any numbers less than zero or greater than 9 (that is, it does
not matter what your function does if the input does contain such
numbers). Your output must exactly match the output shown in the
examples below.

cis 194: homework 3 4

histogram [1,1,1,5] ==

*

*

* *
==========

0123456789

histogram [1,4,5,4,6,6,3,4,2,4,9] ==

*

*

* *

****** *
==========

0123456789

Important note: If you type something like histogram [3,5] at
the ghci prompt, you should see something like this:

" * * \n==========\n0123456789\n"

This is a textual representation of the String output, including \n

escape sequences to indicate newline characters. To actually visualize
the histogram as in the examples above, use putStr, for example,
putStr (histogram [3,5]).

	Code golf!
	Rules
	Hints
	Tasks

