CIS 194: Homework 6
Due Monday, February 25

¢ Files you should submit: Fibonacci.hs

This week we learned about Haskell’s lazy evaluation. This home-
work assignment will focus on one particular consequence of lazy
evaluation, namely, the ability to work with infinite data structures.

Fibonacci numbers

The Fibonacci numbers F, are defined as the sequence of integers,
beginning with 0 and 1, where every integer in the sequence is the
sum of the previous two. That is,

Fp=0
F=1
Fi=F_1+F_ (n>2)

For example, the first fifteen Fibonacci numbers are
0,1,1,2,3,5,8,13,21,34,55,89,144,233,377, . ..

It’s quite likely that you've heard of the Fibonacci numbers before.
The reason they’re so famous probably has something to do with the
simplicity of their definition combined with the astounding variety of
ways that they show up in various areas of mathematics as well as art
and nature.”

Exercise 1
Translate the above definition of Fibonacci numbers directly into a
recursive function definition of type

fib :: Integer -> Integer

so that fib n computes the nth Fibonacci number F;.
Now use fib to define the infinite list of all Fibonacci numbers,

fibsl :: [Integer]

(Hint: You can write the list of all positive integers as [0..].)

Try evaluating fibs1 at the ghci prompt. You will probably get
bored watching it after the first 30 or so Fibonacci numbers, because
fib is ridiculously slow. Although it is a good way to define the Fi-
bonacci numbers, it is not a very good way to compute them—in order

* Note that you may have seen a defini-
tion where Fy = F; = 1. This definition
is wrong. There are several reasons;
here are two of the most compelling:

¢ If we extend the Fibonacci sequence
backwards (using the appropriate
subtraction), we find

...,—8,5,-3,2,-1,1,0,1,1,2,3,5,8...

0 is the obvious center of this
pattern, so if we let Fj = 0 then

F, and F_, are either equal or of
opposite signs, depending on the
parity of n. If Fy = 1 then everything
is off by two.

e If fj = 0 then we can prove the
lovely theorem “If m evenly divides
n if and only if F;, evenly divides
F,.” If Fy = 1 then we have to state
this as “If m evenly divides n if and
only if F,,_1 evenly divides F,_;.”
Ugh.

CIS 194: HOMEWORK 6 2

to compute F, it essentially ends up adding 1 to itself F, times! For
example, shown at right is the tree of recursive calls made by evaluat-
ing fib 5.

As you can see, it does a lot of repeated work. In the end, fib

has running time O(F,), which (it turns out) is equivalent to O(¢"), s
where ¢ = HT\/E is the “golden ratio”. That’s right, the running time >

09y L ay

is exponential in n. What’s more, all this work is also repeated from
each element of the list fibs1 to the next. Surely we can do better.

Exercise 2

When I said “we” in the previous sentence I actually meant “you”.
Your task for this exercise is to come up with more efficient imple-
mentation. Specifically, define the infinite list

fibs2 :: [Integer]

so that it has the same elements as fibs1, but computing the first n
elements of fibs2 requires only O(n) addition operations. Be sure to
use standard recursion pattern(s) from the Prelude as appropriate.

(oay) (ray) (oay) (ray) (1ay)

Streams

We can be more explicit about infinite lists by defining a type Stream

representing lists that must be infinite. (The usual list type represents Of course there are several billion

lists that may be infinite but may also have some finite length.) Haskell implementations of the Fi-
bonacci numbers on the web, and I have
no way to prevent you from looking
whereas the list type has two constructors, [] (the empty list) and at them; but you'll probably learn a

lot more if you try to come up with
something yourself first.

In particular, streams are like lists but with only a “cons” constructor—

(:) (cons), there is no such thing as an empty stream. So a stream is
simply defined as an element followed by a stream.

Exercise 3

¢ Define a data type of polymorphic streams, Stream.

e Write a function to convert a Stream to an infinite list,
streamToList :: Stream a -> [al

¢ To test your Stream functions in the succeeding exercises, it will be
useful to have an instance of Show for Streams. However, if you put
deriving Show after your definition of Stream, as one usually does,
the resulting instance will try to print an entire St ream—which,

of course, will never finish. Instead, you should make your own
instance of Show for Stream,

CIS 194: HOMEWORK 6 3

instance Show a => Show (Stream a) where
show ...

which works by showing only some prefix of a stream (say, the

first 20 elements). Hint: you may find your streamTolList
function useful.

Exercise 4
Let’s create some simple tools for working with Streams.

e Write a function
streamRepeat :: a -> Stream a

which generates a stream containing infinitely many copies of the
given element.

e Write a function
streamMap :: (a -> b) -> Stream a -> Stream b

which applies a function to every element of a Stream.

e Write a function
streamFromSeed :: (a -> a) -> a -> Stream a

which generates a Stream from a “seed” of type a, which is the
first element of the stream, and an “unfolding rule” of type a -> a
which specifies how to transform the seed into a new seed, to be
used for generating the rest of the stream.

Exercise 5
Now that we have some tools for working with streams, let’s cre-
ate a few:

¢ Define the stream
nats :: Stream Integer

which contains the infinite list of natural numbers 0,1, 2, ...

¢ Define the stream
ruler :: Stream Integer

which corresponds to the ruler function
0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4, ...

where the nth element in the stream (assuming the first element
corresponds to n = 1) is the largest power of 2 which evenly

divides n. Hint: define a function
interleaveStreams which alternates
the elements from two streams. Can
you use this function to implement
ruler in a clever way that does not have
to do any divisibility testing?

CIS 194: HOMEWORK 6 4

Fibonacci numbers via generating functions (extra credit)

This section is optional but very cool, so if you have time I hope you
will try it. We will use streams of Integers to compute the Fibonacci
numbers in an astounding way.

The essential idea is to work with generating functions of the form

ag + 4 X + apx* + -+ apx" + ...

where x is just a “formal parameter” (that is, we will never actually
substitute any values for x; we just use it as a placeholder) and all the
coefficients a; are integers. We will store the coefficients ag, ay, 4y, . ..
in a Stream Integer.

Exercise 6 (Optional)

e First, define
X :: Stream Integer

by noting that x = 0+ 1x + 0x% +0x3 +

¢ Define an instance of the Num type class for Stream Integer. Note that you will have to add
Here’s what should go in your Num instance: {-# LANGUAGE FlexibleInstances #-}
to the top of your .hs file in order for
- You should implement the fromInteger function. Note that this instance to be allowed.

n=n+0x+0x2+0x3+....

You should implement negate: to negate a generating function,
negate all its coefficients.

You should implement (+), which works like you would expect:
(ag + a1x + ax® + ...) + (bg + byx + box® +...) = (ag + by) +
(a1 +b)x+ (ag +bo)x> + ...

Multiplication is a bit trickier. Suppose A = a9 + xA’ and
B = by + xB’ are two generating functions we wish to multiply.
We reason as follows:

AB = (ap+xA")B
=a9B+xA'B
=ap(bp+xB") +xA'B
= agby + x(agB’ + A’B)
That is, the first element of the product AB is the product of
the first elements, agby; the remainder of the coefficient stream
(the part after the x) is formed by multiplying every element in

B’ (that is, the tail of B) by a9, and to this adding the result of
multiplying A’ (the tail of A) by B.

Note that there are a few methods of the Num class I have not
told you to implement, such as abs and signum. ghc will complain
that you haven’t defined them, but don’t worry about it. We won't
need those methods. (To turn off these warnings you can add

{-# OPTIONS_GHC -fno-warn-missing-methods #-}

to the top of your file.)
If you have implemented the above correctly, you should be able
to evaluate things at the ghci prompt such as

*Main> x"4
*Main> (1 + x)"5
*Main> (X2 + x + 3) * (x - 5)

The penultimate step is to implement an instance of the Fractional
class for Stream Integer. Here the important method to define is
division, (/). I won’t bother deriving it (though it isn’t hard), but

it turns out that if A = ag + xA’ and B = by + xB/, then A/B = Q,
where Q is defined as

Q = (ao/bo) +x((1/by)(A" — QB')).

That is, the first element of the result is ay/by; the remainder is
formed by computing A" — QB’ and dividing each of its elements
by bo.

Of course, in general, this operation might not result in a stream
of Integers. However, we will only be using this instance in cases
where it does, so just use the div operation where appropriate.

Consider representing the Fibonacci numbers using a generating
function,
F(x)=F 4+ Fx+ EBx*+ Bx® +...

Notice that x + xF(x) + x?F(x) = F(x):
x
Fox + Fx*> 4+ BEx® + Fx* +

Fpx> + EFxX* + Bx* +
0 + x + Fx*> + FBx* + FEx* +

Thus x = F(x) — xF(x) — x2F(x), and solving for F(x) we find
that .
o) =12

Translate this into an (amazing, totally sweet) definition

fibs3 :: Stream Integer

CIS 194: HOMEWORK 6 5

Fibonacci numbers via matrices (extra credit)

It turns out that it is possible to compute the nth Fibonacci number
with only O(logn) (arbitrary-precision) arithmetic operations. This
section explains one way to do it.

Consider the 2 x 2 matrix F defined by

F:[; 3].

Notice what happens when we take successive powers of F (see
http://en.wikipedia.org/wiki/Matrix_multiplication if you
forget how matrix multiplication works):

p_ LAt tagr0] _f2 1
N 0 ol |1-14+0-1 1-1+0-0| |1 1
Fg_'z 111 1] _[3 2]
11 ol |2 1
F4_'3 2l 1 1] [5 3]
201 ol |3 2
F5_'5 3l [1 1] [8 5]
13 2 ol |5 3

Curious! At this point we might well conjecture that Fibonacci num-
bers are involved, namely, that

F' = Fn+l Fn
Fn anl

for all n > 1. Indeed, this is not hard to prove by induction on n.
The point is that exponentiation can be implemented in logarith-

mic time using a binary exponentiation algorithm. The idea is that to

compute x”, instead of iteratively doing n multiplications of x, we

compute
o (x/2)2 n even
x- (x(=1/2)2 0y 0dd
where x"/2 and x("~1)/2 are recursively computed by the same

method. Since we approximately divide # in half at every iteration,
this method requires only O(log n) multiplications.

The punchline is that Haskell’s exponentiation operator (*) already
uses this algorithm, so we don’t even have to code it ourselves!

CIS 194: HOMEWORK 6 6

http://en.wikipedia.org/wiki/Matrix_multiplication

CIS 194: HOMEWORK 6 7

Exercise 7 (Optional)

* Create a type Matrix which represents 2 x 2 matrices of Integers.

e Make an instance of the Num type class for Matrix. In fact, you only
have to implement the (*) method, since that is the only one we
will use. (If you want to play around with matrix operations a bit

more, you can implement fromInteger, negate, and (+) as well.) Don’t worry about the warnings telling
. .. . L. you that you have not implemented the
e We now get fast (logarithmic time) matrix exponentiation for free, other methods. (If you want to disable
since (*) is implemented using a binary exponentiation algorithm the warnings you can add
in terms of (x). Write a function {-# OPTIONS_GHC -fno-warn-missing-methods #-}
fib4 :: Integer -> Integer to the top of your file.)

which computes the nth Fibonacci number by raising F to the nth
power and projecting out F, (you will also need a special case
for zero). Try computing the one millionth or even ten millionth

Fibonacci number. On my computer the millionth Fi-
bonacci number takes only 0.32 seconds
to compute but more than four seconds
to print on the screen—after all, it has
just over two hundred thousand digits.

	Fibonacci numbers
	Streams
	Fibonacci numbers via generating functions (extra credit)
	Fibonacci numbers via matrices (extra credit)

