Spring, 2020 CIS 262

Automata, Computability and Complexity Jean Gallier
 Practice Final Exam

April 28, 2020

Problem 1 (10 pts). Let Σ be an alphabet.
(1) What is an ambiguous context-free grammar? What is an inherently ambiguous context-free language?
(2) Is the following context-free grammar ambiguous, and if so demonstrate why?

$$
\begin{aligned}
& E \longrightarrow E+E \\
& E \longrightarrow E * E \\
& E \longrightarrow(E) \\
& E \longrightarrow a
\end{aligned}
$$

Problem 2 (5pts). Given any trim DFA $D=\left(Q, \Sigma, \delta, q_{0}, F\right)$ accepting a language $L=$ $L(D)$, if D is a minimal DFA, then prove that its Myhill-Nerode equivalence relation \simeq_{D} is equal to ρ_{L}.

Problem 3 (10 pts).
Consider the following DFA D_{0} with start state A and final state D given by the following transition table:

	a	b
A	B	A
B	C	A
C	D	A
D	D	A

Reverse all the arrows of D_{0}, obtaining the following NFA N (wihout ϵ-transitions) with start state D and final state A given by the following table:

	a	b
A	\emptyset	$\{A, B, C, D\}$
B	$\{A\}$	\emptyset
C	$\{B\}$	\emptyset
D	$\{C, D\}$	\emptyset

This NFA accepts the language $\{a a a\}\{a, b\}^{*}$.
(1) Use the subset construction to convert N to a DFA D (with 5 states).
(2) Prove that D is a minimal DFA.

Problem 4 (10 pts). Given any context-free grammar $G=\left(V, \Sigma, P, S^{\prime}\right)$, with special starting production $S^{\prime} \longrightarrow S$ where S^{\prime} only appears in this production, the set of characteristic strings C_{G} is defined by

$$
\begin{array}{r}
C_{G}=\left\{\alpha \beta \in V^{*} \mid S^{\prime}{\underset{r m}{ }}^{*} \alpha B v \underset{r m}{\Longrightarrow} \alpha \beta v,\right. \\
\left.\alpha, \beta \in V^{*}, v \in \Sigma^{*}, B \rightarrow \beta \in P\right\} .
\end{array}
$$

Consider the grammar G with nonterminal set $\{S, A, C\}$ and terminal set $\{a, b, c\}$ given by the following productions:

$$
\begin{aligned}
& S^{\prime} \longrightarrow S \\
& S \longrightarrow A C \\
& A \longrightarrow a A b \\
& A \longrightarrow a b \\
& C \longrightarrow c .
\end{aligned}
$$

Describe all rightmost derivations and the set C_{G}.
Problem 5 (20 pts).
(i) Give a context-free grammar for the language

$$
L_{1}=\left\{a^{m} b^{n} c^{p} \mid n \neq p, m, n, p \geq 1\right\}
$$

(ii) Prove that the language L is not regular.

Problem 6 (10 pts).
(i) Give a context-free grammar for the language

$$
L_{2}=\left\{a^{m} b^{n} \mid n<3 m, m>0, n \geq 0\right\} .
$$

Problem 7 (10 pts).

Prove that if the language $L_{1}=\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\}$ is not context-free (which is indeed the case), then the language $L_{2}=\left\{w \mid w \in\{a, b, c\}^{*}, \#(a)=\#(b)=\#(c)\right\}$ is not context-free either.

Problem 8 ($\mathbf{1 0} \mathbf{~ p t s) . ~ G i v e ~ a n ~ a l g o r i t h m ~ d e c i d i n g ~ w h e t h e r ~ a ~ c o n t e x t - f r e e ~ g r a m m a r ~ g e n e r a t e s ~}$ the empty language.

Problem 9 (10 pts).
Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a total computable function. Prove that if f is a bijection, then its inverse f^{-1} is also (total) computable.

Problem 10 (15 pts). Recall that the Clique Problem for undirected graphs is this: Given an undirected graph $G=(V, E)$ and an integer $K \geq 2$, is there a set C of nodes with $|C| \geq K$ such that for all $v_{i}, v_{j} \in C$, there is some edge $\left\{v_{i}, v_{j}\right\} \in E$? Equivalently, does G contain a complete subgraph with at least K nodes?

Give a direct polynomial reduction from the Clique Problem for undirected graphs to the Satisfiability Problem.

Assuming that the graph $G=(V, E)$ has n nodes and that the budget is an integer K such that $2 \leq K \leq n$, create $n K$ boolean variables $x_{i k}$ with intended meaning that $x_{i k}=\mathbf{T}$ if node v_{i} is chosen as the k th element of a clique C, with $1 \leq k \leq K$, and write clauses asserting that K nodes are chosen to belong to a clique C.

