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Problem 1 (10 pts). Let Σ be an alphabet.

(1) What is an ambiguous context-free grammar? What is an inherently ambiguous
context-free language?

(2) Is the following context-free grammar ambiguous, and if so demonstrate why?

E −→ E + E

E −→ E ∗ E
E −→ (E)

E −→ a.

Solution. (1) See Definition 7.5 of the notes.

(2) Yes, this grammar is ambiguous. For example, the string a + a ∗ a has two distinct
leftmost derivations

E =⇒ E ∗ E =⇒ E + E ∗ E
=⇒ a+ E ∗ E =⇒ a+ a ∗ E =⇒ a+ a ∗ a,

and

E =⇒ E + E =⇒ a+ E

=⇒ a+ E ∗ E =⇒ a+ a ∗ E =⇒ a+ a ∗ a.

Problem 2 (5pts). Given any trim DFA D = (Q,Σ, δ, q0, F ) accepting a language L =
L(D), if D is a minimal DFA, then prove that its Myhill-Nerode equivalence relation 'D is
equal to ρL.
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Solution. We proved in Proposition 6.6 of the notes that for any trim DFA D accepting a
language L, we have

'D⊆ ρL.

We also proved that the number of equivalence classes of ρL is the size of the minimal DFA’s
for L (again, see Proposition 6.6). Therefore, if D is a minimal DFA, then 'D and ρL have
the same number of classes, which implies that 'D= ρL.

Problem 3 (10 pts).

Consider the following DFA D0 with start state A and final state D given by the following
transition table:

a b

A B A
B C A
C D A
D D A

Reverse all the arrows of D0, obtaining the following NFA N (wihout ε-transitions) with
start state D and final state A given by the following table:

a b

A ∅ {A,B,C,D}
B {A} ∅
C {B} ∅
D {C,D} ∅

This NFA accepts the language {aaa}{a, b}∗.

(1) Use the subset construction to convert N to a DFA D (with 5 states).

(2) Prove that D is a minimal DFA.

Solution. (1) Applying the subset construction, we obtain the following DFA with start state
0 and final state 4:

a b

0 {D} 1 2
1 {C,D} 3 2
2 ∅ 2 2
3 {B,C,D} 4 2
4 {A,B,C,D} 4 4
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(2) Let’s apply the method for propagating inequivalence described in Section 6.3 of
the notes. Since 4 is the only final state, the intial table is the following (where × means
inequivalent, and means don’t know yet):

1
2
3
4 × × × ×

0 1 2 3

Let us proceed from the botttom up and from right to left (as opposed to the top down).
At the end of the first round, we get

1 ×
2 × ×
3 × × ×
4 × × × ×

0 1 2 3

Nothing changes during the second round, so we conclude that there are no pairs of
equivalent states, which means that the DFA is minimal.

Problem 4 (10 pts). Given any context-free grammar G = (V,Σ, P, S ′), with special start-
ing production S ′ −→ S where S ′ only appears in this production, the set of characteristic
strings CG is defined by

CG = {αβ ∈ V ∗ | S ′ =⇒
rm

∗ αBv =⇒
rm

αβv,

α, β ∈ V ∗, v ∈ Σ∗, B → β ∈ P}.

Consider the grammar G with nonterminal set {S,A,C} and terminal set {a, b, c} given
by the following productions:

S ′ −→ S

S −→ AC

A −→ aAb

A −→ ab

C −→ c.

Describe all rightmost derivations and the set CG.

Solution. Rightmost derivations are of the form

S ′ =⇒
rm

S
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or

S ′ =⇒
rm

S

S =⇒
rm

AC

or

S ′ =⇒
rm

S

S =⇒
rm

AC

AC =⇒
rm

Ac

or

S ′ =⇒
rm

S

S =⇒
rm

AC

AC =⇒
rm

Ac

Ac =⇒
rm

∗ anAbnc

anAbnc =⇒
rm

an+1bn+1c = an+1bbnc

or

S ′ =⇒
rm

S

S =⇒
rm

AC

AC =⇒
rm

Ac

Ac =⇒
rm

∗ anAbnc

anAbnc =⇒
rm

an+1Abn+1c = an+1Abbnc

with n ≥ 0. It follows that

CG = {S,AC,Ac, anb, anAb | n ≥ 1}.

Problem 5 (20 pts).

(i) Give a context-free grammar for the language

L2 = {ambncp | n 6= p, m, n, p ≥ 1}.

(ii) Prove that the language L2 is not regular.
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Solution. Let G2 be the grammar whose productions are

S −→ ABY | AY C
Y −→ bY c | bc
A −→ aA | a
B −→ bB | b
C −→ cC | c.

It is easy to check (by induction on the length of derivations) that L(G2) = L2.

(ii) We proceed by contradiction using Myhill-Nerode. If L2 is regular, then there is a
right-invariant equivalence relation ' of finite index such that L2 is the union of classes of
'. Consider the infinite sequence

ab, ab2, . . . , abn, . . . .

Since ' has a finite number of classes, there are two distinct strings abi and abj in the above
sequence such that

abi ' abj

with 1 ≤ i < j. By right-invariance, by concatenating on the right with ci, we obtain

abici ' abjci

and since i < j, we have abjci ∈ L2 and abici /∈ L2, a contradiction.

Problem 6 (10 pts).

(i) Give a context-free grammar for the language

L2 = {ambn | n < 3m, m > 0, n ≥ 0}.

Solution.

S −→ aSXXX

S −→ aXX

X −→ b | ε

By induction, every leftmost derivation is of the form

S
m

=⇒
lm

amSX3m =⇒
lm

am+1X3m+2 ∗
=⇒
lm

am+1bn,

with m ≥ 0 and n < 3(m+ 1).

Problem 7 (10 pts).
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Prove that if the language L1 = {anbncn | n ≥ 1} is not context-free (which is indeed the
case), then the language L2 = {w | w ∈ {a, b, c}∗, #(a) = #(b) = #(c)} is not context-free
either.

Solution. We know from Homework 8 that the context-free languages are closed under
intersection with the regular languages. Assume by contradiction that L2 is context-free.
The language R = {a}∗{b}∗{c}∗ is regular (for example, an NFA can be easily constructed),
and

L1 = L2 ∩R.

Since L2 is context-free and R is regular, then L1 is context-free, a contradiction.

Problem 8 (10 pts). Give an algorithm deciding whether a context-free grammar generates
the empty language.

Answer . Let G be a context-free grammar. To test whether L(G) = ∅, compute the set of

nonterminals that derive some terminal string, T (G) = {A ∈ N | ∃w ∈ Σ∗, A
+

=⇒ w}, using
the iterative method given in the notes (Section 7.5). Then, test whether S ∈ T (G) (where
S is the start symbol of G).

Problem 9 (10 pts).

Let f : N → N be a total computable function. Prove that if f is a bijection, then its
inverse f−1 is also (total) computable.

Solution. Since the subtraction operation on natural numbers (monus) is primitive recursive,
and since f is computable, the functions g1, g2 : N× N→ N given by

g1(x, y) = f(x)− y, g2(x, y) = y − f(x)

are computable. Then the function h : N→ N defined by minimization by

h(y) = min x[abs(f(x), y) = 0] = min x[add(f(x)− y, y − f(x)) = 0]

is partial computable. However, since f is bijective, for any y ∈ N, there is a unique x ∈ N
such that f(x) = y, namely x = f−1(y), so in fact h = f−1. This shows that f−1 is partial
computable, but since it is a total function, it is computable.

Problem 10 (15 pts). Recall that the Clique Problem for undirected graphs is this:
Given an undirected graph G = (V,E) and an integer K ≥ 2, is there a set C of nodes with
|C| ≥ K such that for all vi, vj ∈ C, there is some edge {vi, vj} ∈ E? Equivalently, does G
contain a complete subgraph with at least K nodes?

Give a direct polynomial reduction from the Clique Problem for undirected graphs to
the Satisfiability Problem.
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Assuming that the graph G = (V,E) has n nodes and that the budget is an integer K
such that 2 ≤ K ≤ n, create nK boolean variables xik with intended meaning that xik = T
if node vi is chosen as the kth element of a clique C, with 1 ≤ k ≤ K, and write clauses
asserting that K nodes are chosen to belong to a clique C.

Solution. We want to assert that there is an injection κ : {1, . . . , K} → {1, . . . , n} such that
for all h, k with 1 ≤ h < k ≤ K, there is an edge between vi and vj, with κ(h) = i and
κ(k) = j. Since κ(k) = i iff xik = T, this is equivalent to saying that if xih = T and xjk = T,
then {vi, vj} ∈ E.

To assert that K choices of nodes are made, equivalently that κ(k) is defined for all
k ∈ {1, . . . , K}, write the K clauses

(x1k ∨ x2k ∨ · · · ∨ xnk), k = 1, . . . , K.

To assert that at most one node is chosen as the kth node in C, equivalently that κ is a
functional relation, write the clauses

(xik ∨ xjk) 1 ≤ i < j ≤ n, k = 1, . . . , K.

To assert that no node is picked twice, equivalently that κ is injective, write the clauses

(xih ∨ xik) 1 ≤ h < k ≤ K, i = 1, . . . , n.

To assert that any two distinct nodes in C are connected by an edge, we say that for all h, k
with 1 ≤ h < k ≤ k, if xih = T and xjk = T, namely xih ∧ xjk = T, then {vi, vj} ∈ E. The
contrapositive says that if {vi, vj} /∈ E, then xih ∧ xjk = T, or equivalently (xih ∨ xjk) = T.
Thus we have the clauses

(xih ∨ xjk) if {vi, vj} /∈ E, 1 ≤ h < k ≤ K,

which assert that if there is no edge between vi and vj, then vi and vj should not be chosen
to be in C. Let S be the above set of clauses,

If the graph G has a clique with at least K nodes, then it has a clique C = {vi1 , . . . , viK}
with K nodes, and then it is clear that the clauses in S are satisfied by the truth assignment
v such that

v(xjk) =

{
T if j = ik, 1 ≤ k ≤ K, 1 ≤ j ≤ n

F otherwise.

Conversely, if the clauses in S are satisfied by a truth assignment v, then we obtain the
clique of size K given by C = {vi1 , . . . , viK} with

ik = j iff v(xjk) = T.

Therefore, G has a clique of size at least K iff the set of clauses S is satisfiable.
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