Spring 2020 CIS 262

Automata, Computability and Complexity Jean Gallier Homework 1

January 16, 2020; Due January 23, 2020, beginning of class
Mostly a review of induction.
Problem B1 (50 pts). Let $S: \mathbb{N} \rightarrow \mathbb{N}$ be the function given by

$$
S(n)=n+1, \quad \text { for all } \in \mathbb{N}
$$

Define the function add: $\mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ recursively as follows for all $m, n \in \mathbb{N}$:

$$
\begin{align*}
a d d(m, 0) & =m \tag{A}\\
\operatorname{add}(m, S(n)) & =S(\operatorname{add}(m, n)) \tag{B}
\end{align*}
$$

(1) Prove that

$$
\operatorname{add}(\operatorname{add}(m, n), p)=\operatorname{add}(m, \operatorname{add}(n, p))
$$

for all $m, n, p \in \mathbb{N}$. In other words, $a d d$ is associative.
Hint. Use induction on p. It turns out that $a d d(m, n)=m+n$, where + is the usual addition of natural numbers but you can't use this fact!
(2) We would like to prove that

$$
\operatorname{add}(m, n)=\operatorname{add}(n, m), \quad \text { for all } m, n \in \mathbb{N}
$$

but this is a little tricky. First prove

$$
\begin{equation*}
\operatorname{add}(0, n)=n, \quad \text { for all } n \in \mathbb{N} \tag{2a}
\end{equation*}
$$

Also prove

$$
\begin{equation*}
\operatorname{add}(S(m), n)=S(\operatorname{add}(m, n)), \quad \text { for all } m, n \in \mathbb{N} \tag{2b}
\end{equation*}
$$

Hint. Use induction on n.
Finally, prove that

$$
\operatorname{add}(m, n)=\operatorname{add}(n, m), \quad \text { for all } m, n \in \mathbb{N}
$$

In other words, $a d d$ is commutative.
Hint. Use induction on m.
Problem B2 (10 pts). Let Σ be any alphabet. For any string $w \in \Sigma^{*}$ recall that w^{n} is defined inductively as follows:

$$
\begin{aligned}
w^{0} & =\epsilon \\
w^{n+1} & =w^{n} w, \quad n \in \mathbb{N} .
\end{aligned}
$$

For any string $w \in \Sigma^{*}$ and any natural numbers $m, n \in \mathbb{N}$, prove that

$$
w^{m} w^{n}=w^{m+n} .
$$

Hint: Use induction on n.
Problem B3 (40 pts). Let Σ be any alphabet. Given a string $w \in \Sigma^{*}$, its reversal w^{R} is defined inductively as follows: $\epsilon^{R}=\epsilon$, and $(u a)^{R}=a u^{R}$, where $a \in \Sigma$ and $u \in \Sigma^{*}$.
(1) Prove that $(u v)^{R}=v^{R} u^{R}$, for all $u, v \in \Sigma^{*}$.
(2) Prove that $\left(w^{R}\right)^{R}=w$, for all $w \in \Sigma^{*}$.

TOTAL: 100 points.

