Spring 2020 CIS 262

Automata, Computability and Complexity Jean Gallier
 Homework 2

January 23, 2020; Due January 30, 2020, beginning of class

Problem B1 (70 pts). Let $\Sigma=\left\{a_{1}, \ldots, a_{k}\right\}$ be any alphabet. Given a string $w \in \Sigma^{*}$, its reversal w^{R} is defined inductively as follows: $\epsilon^{R}=\epsilon$, and $(u a)^{R}=a u^{R}$, where $a \in \Sigma$ and $u \in \Sigma^{*}$.

A palindrome is a string w such that $w=w^{R}$. Here are some examples of palindromes:

$$
\begin{aligned}
& \text { eye } \\
& \text { racecar } \\
& \text { never odd or even } \\
& \text { god saw I was dog } \\
& \text { campus motto bottoms up mac } \\
& \text { do geese see god }
\end{aligned}
$$

If $k=1$, every string is a palindrome. Therefore we assume that $k \geq 2$.
We would like to give a formula giving the number p_{n} of all palindromes w of length $|w|=n \geq 0$ over the alphabet $\Sigma=\left\{a_{1}, \ldots, a_{k}\right\}$ with k letters.
(1) Prove that a palindrome $w \in \Sigma^{*}$ is either the empty string $w=\epsilon$, or $w=a$ with $a \in \Sigma$, or $w=a u a$ where u is a palindrome of length $n-2$ where $n=|w| \geq 2$ and $a \in \Sigma$ is some letter.
(2) Prove that $p_{0}=1, p_{1}=k$, and

$$
p_{n+2}=k p_{n}, \quad \text { for all } n \geq 0
$$

Give a formula for p_{n}. Distinguish between the cases where $n=2 m$ (n is even) and $n=2 m+1$ (n is odd). You must prove the correctness of your formulae (use induction).

Do not give formulae in terms of $n / 2$ when n is even or $(n-1) / 2$ when n odd. Please give formulae for $p_{2 m}$ and $p_{2 m+1}$ in terms of m.
(3) Prove that the number P_{n} of all palindromes w of length $\leq n$ (which means that $0 \leq|w| \leq n$) over the alphabet $\Sigma=\left\{a_{1}, \ldots, a_{k}\right\}$ with k letters is given by

$$
\begin{aligned}
P_{2 m} & =\frac{2 k^{m+1}-k-1}{k-1} & n=2 m \\
P_{2 m+1} & =\frac{k^{m+2}+k^{m+1}-k-1}{k-1} & n=2 m+1,
\end{aligned}
$$

for any natural number $m \in \mathbb{N}$. Prove that the number Q_{n} of all non-palindromes w of length $\leq n$ over the alphabet $\Sigma=\left\{a_{1}, \ldots, a_{k}\right\}$ is given by

$$
\begin{aligned}
Q_{2 m} & =\frac{k^{2 m+1}-2 k^{m+1}+k}{k-1} & n=2 m \\
Q_{2 m+1} & =\frac{k^{2 m+2}-k^{m+2}-k^{m+1}+k}{k-1} & n=2 m+1,
\end{aligned}
$$

for any natural number $m \in \mathbb{N}$.
Hint. Figure out the total number of strings of length $\leq n$ over an alphabet of size $k \geq 2$.
(4) If $k=2$, prove that if $m \geq 2$, then $P_{2 m} / Q_{2 m}<1$ and $P_{2 m+1} / Q_{2 m+1}<1$, so there are more non-palindromes than palindromes. What is 536870909 (in relation to palindromes)? Show that

$$
\frac{536870909}{2^{55}-1} \approx 2^{-26} \approx 1.4901 \times 10^{-8}
$$

What the interpretation of the above ratio as a probability?

Problem B2 (30 pts). Let Σ be any alphabet. For any string $w \in \Sigma^{*}$ recall that w^{n} is defined inductively as follows:

$$
\begin{aligned}
w^{0} & =\epsilon \\
w^{n+1} & =w^{n} w, \quad n \in \mathbb{N} .
\end{aligned}
$$

Prove the following property: for any two strings $u, v \in \Sigma^{*}, u v=v u$ iff there is some $w \in \Sigma^{*}$ such that $u=w^{m}$ and $v=w^{n}$, for some $m, n \geq 0$.
Hint. In the "hard" direction, consider the subcases
(1) $|u|=|v|$,
(2) $|u|<|v|$ and
(3) $|u|>|v|$
and use an induction on $|u|+|v|$.

TOTAL: 100 points.

