Spring 2020 CIS 262

Automata, Computability and Complexity Jean Gallier Homework 3

January 30, 2020; Due February 6, 2020, beginning of class
"A problems" are for practice only, and should not be turned in.
Problem A1. Let Σ be an alphabet, for any languages $L_{1}, L_{2}, L_{3} \subseteq \Sigma^{*}$, prove that if $L_{1} \subseteq L_{2}$, then $L_{1} L_{3} \subseteq L_{2} L_{3}$.

Problem A2. Let Σ be an alphabet. Given any two families of languages $\left(A_{i}\right)_{i \in I}$ and $\left(B_{j}\right)_{j \in J}$, where I and J are any arbitrary index sets and $A_{i}, B_{j} \subseteq \Sigma^{*}$, prove that

$$
\left(\bigcup_{i \in I} A_{i}\right)\left(\bigcup_{j \in J} B_{j}\right)=\bigcup_{(i, j) \in I \times J} A_{i} B_{j} .
$$

"B problems" must be turned in. You may use the solutions to the A problems to solve the B problems.

Problem B1 (30 pts). Given an alphabet Σ, for any language $L \subseteq \Sigma^{*}$, prove that $L^{*} L^{*}=L^{*}$ and $L^{* *}=L^{*}$.
Hint. To prove that $L^{* *}=L^{*}$, prove that $\left(L^{*}\right)^{n}=L^{*}$ for all $n \geq 1$.
Problem B2 (30 pts). Let L be any language over some alphabet Σ.
(a) Prove that $L=L^{+}$iff $L L \subseteq L$.
(b) Prove that $\left(L=\emptyset\right.$ or $\left.L=L^{*}\right)$ iff $L L=L$.

Problem B3 (40 pts). For any language $L \subseteq\{a\}^{*}$, prove that if $L=L^{*}$, then there is a finite language $S \subseteq L$ such that $L=S^{*}$.
Hint. If $L \neq\{\epsilon\}$, then L contains some nonempty strings, and there is a shortest nonempty string $a^{m} \in L$. Consider the finite set S of strings in L of the form $a^{m q+r}$, where $0 \leq r \leq m-1$, and where $q \geq 0$ is minimal.

Problem B4 (20 pts). For any set X and any function $g: X \rightarrow 2^{X}$, let D be the set defined in the proof of Cantor's theorem by

$$
D=\{x \in X \mid x \notin g(x)\} \in 2^{X} .
$$

Consider the set $X=\{a, b, c\}$.
(1) Give a function $g_{1}: X \rightarrow 2^{X}$ such that $D=\emptyset$.
(1) Give a function $g_{2}: X \rightarrow 2^{X}$ such that $D=X=\{a, b, c\}$.

TOTAL: 120 points.

