Problem B1 (50 pts). Let R be any regular language over some alphabet Σ. Prove that the language

$$L^{1/2} = \{ u \in \Sigma^* \mid uu \in R \}$$

is regular.

Hint. Let $D = (Q, \Sigma, \delta, q_0, F)$ be a DFA accepting R. Express $L^{1/2}$ as a finite union of intersections $L^1_p \cap L^2_p$ of languages L^1_p and L^2_p (with $p \in Q$) accepted by DFA’s obtained by modifying D.

Problem B2 (50 pts). (a) Let $T = \{0, 1, 2\}$, let C be the set of 20 strings of length three over the alphabet T,

$$C = \{ u \in T^3 \mid u \notin \{110, 111, 112, 101, 121, 011, 211\} \},$$

let $\Sigma = \{0, 1, 2, c\}$, and consider the language

$$L_M = \{ w \in \Sigma^* \mid w = u_1cu_2c\cdots cu_n, \ n \geq 1, u_i \in C \}.$$

Prove that L_M is regular (there is a DFA with 7 states).

(b) The language L_M has a geometric interpretation as a certain subset of \mathbb{R}^3 (actually, \mathbb{Q}^3), as follows: Given any string, $w = u_1cu_2c\cdots cu_n \in L_M$, denoting the jth character in u_i by u^j_i, where $j \in \{1, 2, 3\}$, we obtain three strings

$$w^1 = u^1_1u^1_2\cdots u^1_n, \quad w^2 = u^2_1u^2_2\cdots u^2_n, \quad w^3 = u^3_1u^3_2\cdots u^3_n.$$

For example, if $w = 012c001c222c122$ we have $w^1 = 0021$, $w^2 = 1022$, and $w^3 = 2122$. Now, a string $v \in T^+$ can be interpreted as a decimal real number written in base three! Indeed, if

$$v = b_1b_2\cdots b_k, \quad \text{where} \quad b_i \in \{0, 1, 2\} = T \ (1 \leq i \leq k),$$
we interpret \(v \) as \(n(v) = 0.b_1b_2 \cdots b_k \), i.e.,

\[
 n(v) = b_13^{-1} + b_23^{-2} + \cdots + b_k3^{-k}.
\]

Finally, a string, \(w = u_1cu_2c \cdots cu_n \in L_M \), is interpreted as the point, \((x_w, y_w, z_w) \in \mathbb{R}^3\), where

\[
 x_w = n(w^1), \quad y_w = n(w^2), \quad z_w = n(w^3).
\]

Therefore, the language, \(L_M \), is the encoding of a set of rational points in \(\mathbb{R}^3 \), call it \(M \). This turns out to be the rational part of a fractal known as the Menger sponge.

Describe recursive rules to create the set \(M \), starting from a unit cube in \(\mathbb{R}^3 \). Justify as best as you can how these rules are derived from the description of the coordinates of the points of \(M \) defined above (which points are omitted, included, ...).

Draw some pictures illustrating this process and showing approximations of the Menger sponge.

Extra Credit (30 points). Write a computer program to draw the Menger sponge (based on the ideas above).

Problem B3 (30 pts). Consider the following NFA accepting the language \(L = \{aa, aaa\}^* \) (over the alphabet \(\Sigma = \{a\}\)):

<table>
<thead>
<tr>
<th></th>
<th>(\epsilon)</th>
<th>(a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\emptyset)</td>
<td>{1}</td>
</tr>
<tr>
<td>1</td>
<td>(\emptyset)</td>
<td>{2, 3}</td>
</tr>
<tr>
<td>2</td>
<td>(\emptyset)</td>
<td>{3}</td>
</tr>
<tr>
<td>3</td>
<td>{0}</td>
<td>(\emptyset)</td>
</tr>
</tbody>
</table>

(1) Apply the subset construction algorithm presented on page 75 of the slides to obtain a DFA for \(L \) (you should get a DFA with 5 states).

(2) The language \(L = \{aa, aaa\}^* \) is of the form \(L = \{a\}^* - S \), where \(S \) is a finite set of strings. What exactly is \(S \)?

(3) Give a DFA with 3 states accepting \(L \).

TOTAL: 130 points + 30 points extra credit.