Spring 2020 CIS 262

Automata, Computability and Complexity Jean Gallier
 Homework 4

February 6, 2020; Due February 13, 2020, beginning of class
"B problems" must be turned in.
Problem B1 (50 pts). Let $\Sigma=\left\{a_{1}, \ldots, a_{n}\right\}$ be an alphabet of n symbols, with $n \geq 2$.
(1) Construct an NFA with $2 n+1$ states accepting the set L_{n} of strings over Σ such that, every string in L_{n} has an odd number of a_{i}, for some $a_{i} \in \Sigma$. Equivalently, if L_{n}^{i} is the set of all strings over Σ with an odd number of a_{i}, then $L_{n}=L_{n}^{1} \cup \cdots \cup L_{n}^{n}$.
(2) Prove that there is a DFA with 2^{n} states accepting the language L_{n}.
(3) Prove that every DFA accepting L_{n} has at least 2^{n} states.

Hint. If a DFA D with $k<2^{n}$ states accepts L_{n}, show that there are two strings u, v with the property that, for some $a_{i} \in \Sigma, u$ contains an odd number of a_{i} 's, v contains an even number of a_{i} 's, and D ends in the same state after processing u and v. From this, conclude that D accepts incorrect strings.

Problem B2 (40 pts). For any integer, $n \geq 0$, let

$$
L_{n}=\left\{w \in\{a, b\}^{*}| | w \mid \neq n\right\} .
$$

(1) Construct a DFA D_{n} with $n+2$ states accepting L_{n}.
(2) Let $D=\left(Q,\{a, b\}, \delta, q_{0}, F\right)$ be any DFA over the alphabet $\Sigma=\{a, b\}$. Describe a construction of a DFA $D_{\neq n}$ (obtained from D) such that $L\left(D_{\neq n}\right)=\emptyset$ iff the DFA D does not accept strings of length n.

Problem B3 (50 pts). Let R be any regular language over some alphabet Σ. Prove that the language

$$
L^{1 / 2}=\left\{u \in \Sigma^{*} \mid u u \in R\right\}
$$

is regular.
Hint. Let $D=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA accepting R. Express $L^{1 / 2}$ as a finite union of intersections $L_{p}^{1} \cap L_{p}^{2}$ of languages L_{p}^{1} and L_{p}^{2} (with $p \in Q$) accepted by DFA's obtained by modifying D.

TOTAL: 140 points

