Spring 2020 CIS 262

Automata, Computability and Complexity Jean Gallier
 Homework 5

February 13 2020; Due February 21, 2020, midnight
"B problems" must be turned in.

Do Problem B1 and B2.

Do Problem B3 or B4.
Problem B1 (30 pts). Consider the following NFA accepting the language $L=\{a a, a a a\}^{*}$ (over the alphabet $\Sigma=\{a\}$):

	ϵ	a
0	\emptyset	$\{1\}$
1	\emptyset	$\{2,3\}$
2	\emptyset	$\{3\}$
3	$\{0\}$	\emptyset

State 0 is the start state and the only final state.
(1) Apply the subset construction algorithm presented in the notes to obtain a DFA for L (you should get a DFA with 5 states). You must show the transition table of the DFA obtained by applying the subset construction containing the states of the DFA as subsets of the original NFA, the symbolic names you are assigning to them (also called their indices), and the actual transition table, as shown in the notes. You don't need to show the steps that you went through to construct this table.
(2) The language $L=\{a a, a a a\}^{*}$ is of the form $L=\{a\}^{*}-S$, where S is a finite set of strings. What exactly is S ?
(3) Give a DFA with 3 states accepting L.

Problem B2 (50 pts). Let R be any regular language over some alphabet Σ. Prove that the language

$$
L=\left\{u \in \Sigma^{*}\left|\exists v \in \Sigma^{*}, u v \in R,|u|=|v|\right\}\right.
$$

is regular.

Hint. Think nondeterministically.
Problem B3 (50 pts). Let $D=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA. Recall that a state $p \in Q$ is accessible or reachable iff there is some string $w \in \Sigma^{*}$, such that

$$
\delta^{*}\left(q_{0}, w\right)=p
$$

i.e., there is some path from q_{0} to p in D. Consider the following method for computing the set Q_{r} of reachable states (of D): define the sequence of sets $Q_{r}^{i} \subseteq Q$, where

$$
\begin{aligned}
& Q_{r}^{0}=\left\{q_{0}\right\} \\
& Q_{r}^{i+1}=\left\{q \in Q \mid \exists p \in Q_{r}^{i}, \exists a \in \Sigma, q=\delta(p, a)\right\}
\end{aligned}
$$

(1) Prove by induction on i that Q_{r}^{i} is the set of all states reachable from q_{0} using paths of length i (where i counts the number of edges).

Give an example of a DFA such that $Q_{r}^{i+1} \neq Q_{r}^{i}$ for all $i \geq 0$.
(2) Give an example of a DFA such that $Q_{r}^{i} \neq Q_{r}$ for all $i \geq 0$.
(3) Change the inductive definition of Q_{r}^{i} as follows:

$$
Q_{r}^{i+1}=Q_{r}^{i} \cup\left\{q \in Q \mid \exists p \in Q_{r}^{i}, \exists a \in \Sigma, q=\delta(p, a)\right\}
$$

Prove that there is a smallest integer i_{0} such that

$$
Q_{r}^{i_{0}+1}=Q_{r}^{i_{0}}=Q_{r}
$$

Define the DFA D_{r} as follows: $D_{r}=\left(Q_{r}, \Sigma, \delta_{r}, q_{0}, F \cap Q_{r}\right)$, where $\delta_{r}: Q_{r} \times \Sigma \rightarrow Q_{r}$ is the restriction of δ to Q_{r}. Explain why D_{r} is indeed a DFA.
(4) Prove that $L\left(D_{r}\right)=L(D)$.

Problem B4 (50 pts). This problem illustrates the fact that languages can be used to encode complicated geometric shapes.
(1) Given the alphabet $\Sigma=\{0,1, c\}$, construct a DFA accepting the following language:

$$
L_{S}=\left\{u_{1} c u_{2} c \cdots c u_{n-1} c u_{n} \mid n \geq 1, u_{i} \in\{00,01,10\}\right\}
$$

The language L_{S} has a geometric interpretation as a certain subset of $\mathbb{R}^{2}\left(\right.$ really $\left.\mathbb{Q}^{2}\right)$ as follows: Given any string $w=u_{1} c u_{2} c \cdots c u_{n} \in L_{S}$, if we denote the first character of u_{i} by x_{i} and the second character by y_{i} so that $u_{i}=x_{i} y_{i}\left(x_{i}, y_{i} \in\{0,1\}\right)$, then we obtain two strings

$$
\begin{aligned}
w_{x} & =x_{1} \cdots x_{n} \\
w_{y} & =y_{1} \cdots y_{n} .
\end{aligned}
$$

For example, if $w=01 c 10 c 00 c 10$, then $w_{x}=0101$ and $w_{y}=1000$. Now, a string $z \in\{0,1\}^{+}$ can be interpreted as decimal number in $[0,1]$ written in base two! Indeed, if

$$
z=z_{1} z_{2} \cdots z_{k}, \quad \text { with } z_{i} \in\{0,1\}, 1 \leq i \leq k
$$

we interpret z as the number $n(z)=0 . z_{1} z_{2} \cdots z_{k}$, given by

$$
n(z)=z_{1} 2^{-1}+z_{2} 2^{-2}+\cdots+z_{k} 2^{-k}
$$

Finally, a string $w=u_{1} c u_{2} c \cdots c u_{n} \in L_{S}$ is interpreted as the point in \mathbb{R}^{2} of coordinates $\left(x_{w}, y_{w}\right)$, with

$$
\begin{aligned}
x_{w} & =n\left(w_{x}\right) \\
y_{w} & =n\left(w_{y}\right) .
\end{aligned}
$$

(2) Prove that the set

$$
S=\left\{\left(x_{w}, y_{w}\right) \in \mathbb{R}^{2} \mid w \in L_{S}\right\}
$$

is the subset of points $(x, y) \in \mathbb{R}^{2}$ in the triangle T determined by the vertices $A=(0,0)$, $B=(1,0), C=(0,1)$ such that if the binary representations of x and y are

$$
x=0 . x_{1} x_{2} \cdots x_{n}, \quad y=0 . y_{1} y_{2} \cdots y_{n}
$$

then $\left(x_{i}, y_{i}\right) \neq(1,1)$ for $i=1, \ldots, n$.
(3) Given any point $p \in S$ where p is given by its coordinates in binary as

$$
p=\left(0 . a_{1} a_{2} \cdots a_{n}, 0 . b_{1} b_{2} \cdots b_{n}\right), \quad(n \geq 0)
$$

with the understanding that $p=(0,0)=A$ if $n=0$, show that any other point $q \in \mathbb{R}^{2}$ given by

$$
q=\left(0 . a_{1} a_{2} \cdots a_{n} x_{1} \cdots x_{m}, 0 . b_{1} b_{2} \cdots b_{n} y_{1} \cdots y_{m}\right), \quad(n \geq 0, m \geq 0)
$$

(with the understanding that $q=p$ if $m=0$) belongs the small square whose lower left corner is p and whose sides have length 2^{-n}, and that any other point $q \in S$ given by

$$
q=\left(0 . a_{1} a_{2} \cdots a_{n} x_{1} \cdots x_{m}, 0 . b_{1} b_{2} \cdots b_{n} y_{1} \cdots y_{m}\right), \quad(n \geq 0, m \geq 0)
$$

belongs to the small lower triangle similar to (A, B, C) contained in the small square that we just defined. For example, if $p=(0.01,0.10)$ is the point shown in red, then the points $q \in S$ belong to the triangle showed in blue in Figure 1.

Use this fact to prove that S is obtained by using the following recursive procedure. Starting with the triangle $S_{0}=T$, form the four smaller triangles obtained by joining the midpoints of the sides of T_{0}, and delete the middle triangle. We obtain a subset S_{1} of S_{0} consisting of the union of three triangles. Repeat the procedure on the remaining three triangles. After n steps we obtain a shape S_{n} consisting of 3^{n} triangles. The first two steps of this procedure are illustrated in Figure 2 below.

Figure 1: The small triangle containing the points q.

Figure 2: (a) The shape S_{1} after one iteration. (b) The shape S_{2} after two iterations.

Draw a picture by iterating the above procedure 3 or 4 times. What sort of shape do you get?

Remark: The set of points in S defined above the set of rational points of a fractal set known as the Sierpinski gasket. The S_{n} are approximations of S and S is the limit (in some suitable sense) of the sequence of S_{n} as n goes to infinity.

Extra Credit (30 pts). Write a computer program to display the Sierpinski gasket. You may use any language available but you must comment your code and explain any parts that are not obvious to understand. Please, submit your source and a printout of the output of your code.
No cheating: I want the version using a right triangle, as shown above, not the version using an equilateral triangle!

What happens to the length of the "perimeter" of S_{n}, that is, the sum of the lengths of all its boundary edges?

TOTAL: $130+30$ points

