“B problems” must be turned in.

Problem B1 (80 pts). Let $D = (Q, \Sigma, \delta, q_0, F)$ be a deterministic finite automaton. Define the relations \approx and \sim on Σ^* as follows:

$x \approx y$ if and only if, for all $p \in Q$, $
\delta^*(p, x) \in F$ iff $\delta^*(p, y) \in F$,

and

$x \sim y$ if and only if, for all $p \in Q$, $\delta^*(p, x) = \delta^*(p, y)$.

(1) Show that \approx is a left-invariant equivalence relation and that \sim is an equivalence relation that is both left and right invariant. (A relation R on Σ^* is left invariant iff uRv implies that $wuRwv$ for all $w \in \Sigma^*$, and R is left and right invariant iff uRv implies that $xuyRxvy$ for all $x, y \in \Sigma^*$.)

(2) Let n be the number of states in Q (the set of states of D). Show that \approx has at most 2^n equivalence classes and that \sim has at most n^n equivalence classes.

Hint. In the case of \approx, consider the function $f: \Sigma^* \rightarrow 2^Q$ given by

$f(u) = \{p \in Q \mid \delta^*(p, u) \in F\}, \quad u \in \Sigma^*$,

and show that $x \approx y$ iff $f(x) = f(y)$. In the case of \sim, let Q^Q be the set of all functions from Q to Q and consider the function $g: \Sigma^* \rightarrow Q^Q$ defined such that $g(u)$ is the function given by

$g(u)(p) = \delta^*(p, u), \quad u \in \Sigma^*, \quad p \in Q$,

and show that $x \sim y$ iff $g(x) = g(y)$.

(3) Given any language $L \subseteq \Sigma^*$, define the relations λ_L and μ_L on Σ^* as follows:

$u \lambda_L v$ iff, for all $z \in \Sigma^*$, $zu \in L$ iff $zv \in L$,

and $u \mu_L v$ iff, for all $z \in \Sigma^*$, $zu \in L$ iff $zv \in L$.

and
\[u \mu_L v \text{ iff, for all } x, y \in \Sigma^*, \ xuy \in L \text{ iff } xvy \in L. \]

Prove that \(\lambda_L \) is left-invariant, and that \(\mu_L \) is left and right-invariant. Prove that if \(L \) is regular, then both \(\lambda_L \) and \(\mu_L \) have a finite number of equivalence classes.

\textit{Hint}: Show that the number of classes of \(\lambda_L \) is at most the number of classes of \(\approx \), and that the number of classes of \(\mu_L \) is at most the number of classes of \(\sim \).

\textbf{Problem B2 (60 pts).} (1) Prove that the intersection, \(L_1 \cap L_2 \), of two regular languages, \(L_1 \) and \(L_2 \), is regular, using the Myhill-Nerode characterization of regular languages.

(2) Let \(h: \Sigma^* \to \Delta^* \) be a homomorphism, as defined on pages 31-33 of the slides on DFA’s and NFA’s. For any regular language, \(L' \subseteq \Delta^* \), prove that
\[h^{-1}(L') = \{w \in \Sigma^* | h(w) \in L'\} \]
is regular, using the Myhill-Nerode characterization of regular languages.

Proceed as follows: Let \(\simeq' \) be a right-invariant equivalence relation on \(\Delta^* \) of finite index \(n \), such that \(L' \) is the union of some of the equivalence classes of \(\simeq' \). Let \(\simeq \) be the relation on \(\Sigma^* \) defined by
\[u \simeq v \text{ iff } h(u) \simeq' h(v). \]

Prove that \(\simeq \) is a right-invariant equivalence relation of finite index \(m \), with \(m \leq n \), and that \(h^{-1}(L') \) is the union of equivalence classes of \(\simeq \).

To prove that the index of \(\simeq \) is at most the index of \(\simeq' \), use \(h \) to define a function \(\hat{h}: (\Sigma^* / \simeq) \to (\Delta^* / \simeq') \) from the partition associated with \(\simeq \) to the partition associated with \(\simeq' \), and prove that \(\hat{h} \) is injective.

Prove that the number of states of any minimal DFA for \(h^{-1}(L') \) is at most the number of states of any minimal DFA for \(L' \). Can it be strictly smaller? If so, give an explicit example.

\textbf{TOTAL: 140 points}