“B problems” must be turned in.

Problem B1 (80 pts). This problem illustrates the power of the congruence version of Myhill-Nerode.

Recall that the reversal of a string, \(w \in \Sigma^* \), is defined inductively as follows:

\[
\epsilon^R = \epsilon \\
(ua)^R = au^R,
\]

for all \(u \in \Sigma^* \) and all \(a \in \Sigma \).

(1) Let \(\sim \) be a congruence (on \(\Sigma^* \)) and assume that \(\sim \) has \(n \) equivalence classes. Define \(\sim_R \) and \(\approx \) by

\[u \sim_R v \iff u^R \sim v^R, \text{ for all } u, v \in \Sigma^* \text{ and } \approx = \sim \cap \sim_R. \]

Prove that the relation \(\approx \) is a congruence and that \(\approx \) has at most \(n^2 \) equivalence classes.

(2) Given any regular language \(L \) over \(\Sigma^* \) let

\[L^{(1/2)} = \{ w \in \Sigma^* \mid ww^R \in L \}. \]

Prove that \(L^{(1/2)} \) is also regular using the relation \(\approx \) of part (1).

(3) Let \(L \) be any regular language over some alphabet \(\Sigma \). For any natural number \(k \geq 2 \), let

\[L^{(1/k)} = \{ w \in \Sigma^* \mid (ww^R)^{k-1} \in L \} = \{ w \in \Sigma^* \mid \underbrace{ww^Rww^R \cdots ww^R}_{k-1} \in L \}. \]

Also define the languages

\[L^{1/\infty} = \{ w \in \Sigma^* \mid (ww^R)^{k-1} \in L, \text{ for all } k \geq 2 \}, \text{ and } \]

\[L^\infty = \{ w \in \Sigma^* \mid (ww^R)^{k-1} \in L, \text{ for some } k \geq 2 \}. \]
Prove that every language \(L^{(1/k)} \) is regular.

(4) Prove that there are only finitely many distinct languages of the form \(L^{(1/k)} \) (this means that the set of languages \(\{ L^{(1/k)} \}_{k \geq 2} \) is finite). Prove that \(L^{1/\infty} \) and \(L^\infty \) are regular.

Problem B2 (100 pts). Which of the following languages are regular? Justify each answer.

1. \(L_1 = \{ wcw \mid w \in \{a, b \}^* \} \). (here \(\Sigma = \{a, b, c\} \)).
2. \(L_2 = \{ xy \mid x, y \in \{a, b \}^* \text{ and } |x| = |y| \} \). (here \(\Sigma = \{a, b\} \)).
3. \(L_3 = \{ a^n \mid n \text{ is a prime number} \} \). (here \(\Sigma = \{a\} \)).
4. \(L_4 = \{ a^m b^n \mid gcd(m, n) = 23 \} \). (here \(\Sigma = \{a, b\} \)).
5. Consider the language \(L_5 = \{ a^{4n+3} \mid 4n + 3 \text{ is prime} \} \).

Assuming that \(L_5 \) is infinite, prove that \(L_5 \) is not regular.

6. Let \(F_n = 2^{2^n} + 1 \), for any integer \(n \geq 0 \), and let
\[
L_6 = \{ a^{F_n} \mid n \geq 0 \}.
\]

Here \(\Sigma = \{a\} \).

Extra Credit (from 10 up to 100 pts). Find explicitly what \(F_0, F_1, F_2, F_3 \) are, and check that they are prime. What about \(F_4 \)?

Is the language \(L_7 = \{ a^{F_n} \mid n \geq 0, F_n \text{ is prime} \} \) regular?

Extra Credit (20 pts). Prove that there are infinitely many primes of the form \(4n + 3 \).

The list of such primes begins with
\[
3, 7, 11, 19, 23, 31, 43, \cdots
\]

Say we already have \(n + 1 \) of these primes, denoted by
\[
3, p_1, p_2, \cdots, p_n,
\]

where \(p_i > 3 \). Consider the number
\[
m = 4p_1 p_2 \cdots p_n + 3.
\]

If \(m = q_1 \cdots q_k \) is a prime factorization of \(m \), prove that \(q_j > 3 \) for \(j = 1, \ldots k \) and that no \(q_j \) is equal to any of the \(p_i \)'s. Prove that one of the \(q_j \)'s must be of the form \(4n + 3 \), which
shows that there is a prime of the form $4n + 3$ greater than any of the previous primes of the same form.

Problem B3 (80 pts). The purpose of this problem is to get a fast algorithm for testing state equivalence in a DFA. Let $D = (Q, \Sigma, \delta, q_0, F)$ be a deterministic finite automaton. Recall that state equivalence is the equivalence relation \equiv on Q, defined such that,

$$p \equiv q \iff \forall z \in \Sigma^* (\delta^*(p, z) \in F \iff \delta^*(q, z) \in F),$$

and that i-equivalence is the equivalence relation \equiv_i on Q, defined such that,

$$p \equiv_i q \iff \forall z \in \Sigma^*, |z| \leq i (\delta^*(p, z) \in F \iff \delta^*(q, z) \in F).$$

A relation $S \subseteq Q \times Q$ is a forward closure iff it is an equivalence relation and whenever $(p, q) \in S$, then $(\delta(p, a), \delta(q, a)) \in S$, for all $a \in \Sigma$.

We say that a forward closure S is good iff whenever $(p, q) \in S$, then $\text{good}(p, q)$, where $\text{good}(p, q)$ holds iff either both $p, q \in F$, or both $p, q \notin F$.

Given any relation $R \subseteq Q \times Q$, recall that the smallest equivalence relation R_\approx containing R is the relation $(R \cup R^{-1})^*$ (where $R^{-1} = \{(q, p) \mid (p, q) \in R\}$, and $(R \cup R^{-1})^*$ is the reflexive and transitive closure of $(R \cup R^{-1})$). We define the sequence of relations $R_i \subseteq Q \times Q$ as follows:

$$R_0 = R_\approx,$$

$$R_{i+1} = (R_i \cup \{(\delta(p, a), \delta(q, a)) \mid (p, q) \in R_i, a \in \Sigma\})_\approx.$$

(1) Prove that $R_{i_0 + 1} = R_{i_0}$ for some least i_0. Prove that R_{i_0} is the smallest forward closure containing R.

Hint. First, prove that

$$R_i \subseteq R_{i+1}$$

for all $i \geq 0$. Next, prove that R_{i_0} is forward closed.

If \sim is any forward closure containing R, prove by induction that

$$R_i \subseteq \sim$$

for all $i \geq 0$.

We denote the smallest forward closure R_{i_0} containing R as R^\dagger, and call it the forward closure of R.

(2) Prove that $p \equiv q$ iff the forward closure R^\dagger of the relation $R = \{(p, q)\}$ is good.
Hint. First, prove that if R^i is good, then

$$R^i \subseteq \equiv .$$

For this, prove by induction that

$$R^i \subseteq \equiv_i$$

for all $i \geq 0$.

Then, prove that if $p \equiv q$, then

$$R^i \subseteq \equiv .$$

For this, prove that \equiv is an equivalence relation containing $R = \{(p,q)\}$ and that \equiv is forward closed.

TOTAL: 260 points + 30 points