Spring 2020 CIS 262

Automata, Computability and Complexity Jean Gallier

Homework 7

March 26, 2020; Due April 7, 2020, beginning of class

"B problems" must be turned in.

Problem B1 (80 pts). Let $D = (Q, \Sigma, \delta, q_0, F)$ be a deterministic finite automaton. Define the relations \approx and \sim on Σ^* as follows:

$$\begin{aligned} x &\approx y \quad \text{if and only if,} \quad \text{for all} \quad p \in Q, \\ \delta^*(p, x) &\in F \quad \text{iff} \quad \delta^*(p, y) \in F, \end{aligned}$$

and

 $x \sim y$ if and only if, for all $p \in Q$, $\delta^*(p, x) = \delta^*(p, y)$.

(a) Show that \approx is a left-invariant equivalence relation and that \sim is an equivalence relation that is both left and right invariant. (A relation R on Σ^* is *left invariant* iff uRv implies that wuRwv for all $w \in \Sigma^*$, and R is *left and right invariant* iff uRv implies that xuyRxvy for all $x, y \in \Sigma^*$.)

(b) Let n be the number of states in Q (the set of states of D). Show that \approx has at most 2^n equivalence classes and that \sim has at most n^n equivalence classes.

Hint. In the case of \approx , consider the function $f: \Sigma^* \to 2^Q$ given by

$$f(u) = \{ p \in Q \mid \delta^*(p, u) \in F \}, \quad u \in \Sigma^*,$$

and show that $x \approx y$ iff f(x) = f(y). In the case of \sim , let Q^Q be the set of all functions from Q to Q and consider the function $g: \Sigma^* \to Q^Q$ defined such that g(u) is the function given by

 $g(u)(p) = \delta^*(p, u), \quad u \in \Sigma^*, \ p \in Q,$

and show that $x \sim y$ iff g(x) = g(y).

(c) Given any language $L \subseteq \Sigma^*$, define the relations λ_L and μ_L on Σ^* as follows:

$$u \lambda_L v$$
 iff, for all $z \in \Sigma^*$, $zu \in L$ iff $zv \in L$,

and

$$u \mu_L v$$
 iff, for all $x, y \in \Sigma^*$, $xuy \in L$ iff $xvy \in L$.

Prove that λ_L is left-invariant, and that μ_L is left and right-invariant. Prove that if L is regular, then both λ_L and μ_L have a finite number of equivalence classes.

Hint: Show that the number of classes of λ_L is at most the number of classes of \approx , and that the number of classes of μ_L is at most the number of classes of \sim .

Problem B2 (80 pts). This problem illustrates the power of the congruence version of Myhill-Nerode.

Let L be any regular language over some alphabet Σ . Define the languages

$$L^{\infty} = \bigcup_{k \ge 1} \{ w^k \mid w \in L \},$$

$$L^{1/\infty} = \{ w \mid w^k \in L, \text{ for all } k \ge 1 \}, \text{ and }$$

$$\sqrt{L} = \{ w \mid w^k \in L, \text{ for some } k \ge 1 \}.$$

Also, for any natural number $k \ge 1$, let

$$L^{(k)} = \{ w^k \mid w \in L \},\$$

and

$$L^{(1/k)} = \{ w \mid w^k \in L \}.$$

(a) Prove that $L^{(1/3)}$ is regular. What about $L^{(3)}$?

(b) Let $k \ge 1$ be any natural number. Prove that there are only finitely many languages of the form $L^{(1/k)} = \{w \mid w^k \in L\}$ and that they are all regular. (In fact, if L is accepted by a DFA with n states, there are at most $2^{(n^n)}$ languages of the form $L^{(1/k)}$).

(c) Is $L^{1/\infty}$ regular or not? Is \sqrt{L} regular or not? What about L^{∞} ?

TOTAL: 160 points