Spring 2020 CIS 262

Automata, Computability and Complexity Jean Gallier Homework 7

March 26, 2020; Due April 7, 2020, beginning of class

"B problems" must be turned in.
Problem B1 (80 pts). Let $D=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a deterministic finite automaton. Define the relations \approx and \sim on Σ^{*} as follows:

$$
\begin{array}{ll}
x \approx y & \text { if and only if, for all } \quad p \in Q, \\
& \delta^{*}(p, x) \in F \quad \text { iff } \quad \delta^{*}(p, y) \in F,
\end{array}
$$

and

$$
x \sim y \quad \text { if and only if, for all } p \in Q, \quad \delta^{*}(p, x)=\delta^{*}(p, y)
$$

(a) Show that \approx is a left-invariant equivalence relation and that \sim is an equivalence relation that is both left and right invariant. (A relation R on Σ^{*} is left invariant iff $u R v$ implies that $w u R w v$ for all $w \in \Sigma^{*}$, and R is left and right invariant iff $u R v$ implies that xuyRxvy for all $x, y \in \Sigma^{*}$.)
(b) Let n be the number of states in Q (the set of states of D). Show that \approx has at most 2^{n} equivalence classes and that \sim has at most n^{n} equivalence classes.
Hint. In the case of \approx, consider the function $f: \Sigma^{*} \rightarrow 2^{Q}$ given by

$$
f(u)=\left\{p \in Q \mid \delta^{*}(p, u) \in F\right\}, \quad u \in \Sigma^{*}
$$

and show that $x \approx y$ iff $f(x)=f(y)$. In the case of \sim, let Q^{Q} be the set of all functions from Q to Q and consider the function $g: \Sigma^{*} \rightarrow Q^{Q}$ defined such that $g(u)$ is the function given by

$$
g(u)(p)=\delta^{*}(p, u), \quad u \in \Sigma^{*}, \quad p \in Q
$$

and show that $x \sim y$ iff $g(x)=g(y)$.
(c) Given any language $L \subseteq \Sigma^{*}$, define the relations λ_{L} and μ_{L} on Σ^{*} as follows:

$$
u \lambda_{L} v \quad \text { iff, for all } \quad z \in \Sigma^{*}, \quad z u \in L \quad \text { iff } \quad z v \in L,
$$

and

$$
u \mu_{L} v \quad \text { iff, for all } \quad x, y \in \Sigma^{*}, \quad x u y \in L \quad \text { iff } \quad x v y \in L .
$$

Prove that λ_{L} is left-invariant, and that μ_{L} is left and right-invariant. Prove that if L is regular, then both λ_{L} and μ_{L} have a finite number of equivalence classes.
Hint: Show that the number of classes of λ_{L} is at most the number of classes of \approx, and that the number of classes of μ_{L} is at most the number of classes of \sim.

Problem B2 (80 pts). This problem illustrates the power of the congruence version of Myhill-Nerode.

Let L be any regular language over some alphabet Σ. Define the languages

$$
\begin{aligned}
L^{\infty} & =\bigcup_{k \geq 1}\left\{w^{k} \mid w \in L\right\} \\
L^{1 / \infty} & =\left\{w \mid w^{k} \in L, \quad \text { for all } k \geq 1\right\}, \quad \text { and } \\
\sqrt{L} & =\left\{w \mid w^{k} \in L, \quad \text { for some } k \geq 1\right\} .
\end{aligned}
$$

Also, for any natural number $k \geq 1$, let

$$
L^{(k)}=\left\{w^{k} \mid w \in L\right\}
$$

and

$$
L^{(1 / k)}=\left\{w \mid w^{k} \in L\right\} .
$$

(a) Prove that $L^{(1 / 3)}$ is regular. What about $L^{(3)}$?
(b) Let $k \geq 1$ be any natural number. Prove that there are only finitely many languages of the form $L^{(1 / k)}=\left\{w \mid w^{k} \in L\right\}$ and that they are all regular. (In fact, if L is accepted by a DFA with n states, there are at most $2^{\left(n^{n}\right)}$ languages of the form $\left.L^{(1 / k)}\right)$.
(c) Is $L^{1 / \infty}$ regular or not? Is \sqrt{L} regular or not? What about L^{∞} ?

TOTAL: 160 points

